Kategorien
Dezember 2024 M D M D F S S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Meta
Archiv der Kategorie: MIR Research
Master Thesis on Instrument Recognition
The thesis „Benedikt Adrian: Implementierung von hybriden Methoden zur Instrumentenerkennung in verrauschten Musikdaten“ (Implementation of Hybrid Methods for Instrument Recognition in Noisy Music Data, PDF in German) applies CNNs together with shallow classifiers for the recognition of instruments in polyphonic … Weiterlesen
Veröffentlicht unter MIR Research, Theses
Schreib einen Kommentar
Two Papers Presented at WCCI 2020
Two papers were presented during WCCI 2020: Vatolkin, I.: Evolutionary Approximation of Instrumental Texture in Polyphonic Audio Recordings [evaluates new features based on evolutionary approximation of instrumental texture for instrument and genre recognition] Ginsel, P., Vatolkin, I. Rudolph, G.: Analysis … Weiterlesen
Veröffentlicht unter MIR Research, Publications
Schreib einen Kommentar
New book: Applications in Statistical Computing
The book Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M (Eds.): Applications in Statistical Computing: From Music Data Analysis to Industrial Quality Improvement, Springer, has recently been published. This volume presents a selection of research papers … Weiterlesen
Veröffentlicht unter MIR Research, Publications
Schreib einen Kommentar
Bachelor thesis on music genre classification with Fuzzy KNN
The thesis „Philipp Ginsel: Strukturelle Komplexitätsmerkmale zur Musikgenre-Klassifikation mit Fuzzy-k-nearest-Neighbors“ (Structural complexity features for music genre classification with Fuzzy-k-nearest-Neighbors, PDF in German) examines different settings for extraction of structural complexity for prediction of music genres with Fuzzy KNN. The tested … Weiterlesen
Veröffentlicht unter MIR Research, Theses
Schreib einen Kommentar
Paper accepted for EvoMUSART 2019
The paper on evolutionary multi-objective training set selection is accepted for EvoMUSART 2019: I. Vatolkin and D. Stoller: Evolutionary Multi-Objective Training Set Selection of Data Instances and Augmentations for Vocal Detection. EvoMUSART 2019, Leipzig, 2019
Veröffentlicht unter MIR Research, Publications
Schreib einen Kommentar
Journal article on music rearrangement published
The article on music rearrangement is published: D. Stoller, I. Vatolkin, and H. Müller: Intuitive and Efficient Computer-Aided Music Rearrangement with Optimised Processing of Audio Transitions. Journal of New Music Research, Routledge, 47(5):416-437, 2018
Veröffentlicht unter Publications
Schreib einen Kommentar
Start of the DFG-funded project on interpretable music segmentation
Today, the DFG-funded project „Evolutionary optimisation for interpretable music segmentation and music categorisation based on discretised semantic metafeatures“ is started. The main goal of the project is to develop new methods for the extraction of interpretable structural information of audio … Weiterlesen
Veröffentlicht unter MIR Research, Project News
Schreib einen Kommentar
Test persons are searched
We search for test persons with basic skills in jazz and improvisation, either guitar or piano players (1.5 hour experiment, 20€). Details in German are here.
Veröffentlicht unter MIR Research
Schreib einen Kommentar
Job offer for a student assistant
For assistance during software project „Music Informatics“, a position as a student assistant (8 hours per week) is offered at the Chair of Algorithm Engineering, Department of Computer Science, TU Dortmund. Please see the full description in German.
Veröffentlicht unter AMUSE & MIR Software, MIR Research, SIGMA, Teaching Activities
Schreib einen Kommentar
AMUSE support of Java 1.8 and RapidMiner 5
Two recent updates (thanks to Frederik Heerde!): – AMUSE can be started now with Java 1.8 (in the older version, using of Java 1.8 led to problems for classification with trained models). – Integrated RapidMiner library was updated to version … Weiterlesen
Veröffentlicht unter AMUSE & MIR Software, MIR Research
Schreib einen Kommentar