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Music source separation

Task of MSS: Recover instrument sources from mixtures
Applications:

Karaoke and instrumental versions
Remixing
Further analysis of sources: Preprocessing for

Singer identification
Transcription
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Generative and discriminative approaches

Generative approach [2, 6]

Model joint p(s1, . . . , sK ,m) with source prior pθ(s1, . . . , sK )
and likelihood p(m|s1, . . . , sK )
Then given a mixture, infer likely sources (posterior inference)

- Inference slow, models constrained for tractable inference
+ Integration of prior knowledge

Discriminative approach

Train fφ(m) to estimate sources directly
Supervised training by ERM:
arg minφ E(mi ,si )∼pdata [l(fφ(m), si )]

+ Simple, fast inference
- Unclear how to define l
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Current state of the art

Discriminative approaches [7, 5]

Training on multitrack datasets

Use neural network for fφ

Use MSE as loss l

Estimation in spectral magnitude domain
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Available data

Multitracks:

DSD100 [4]
MedleyDB [1]
CCMixter (Vocals only) 2

iKala (Vocals only) [3]

Solo instrument recordings:

Bass: IDMT bass notes 3

Drums: ENST-Drums 4

Vocals: DAMP (30,000 songs) 5

And many more

Mixtures: Practically infinite

2https://members.loria.fr/ALiutkus/kam/
3https:

//www.idmt.fraunhofer.de/en/business_units/m2d/smt/bass.html
4https://perso.telecom-paristech.fr/grichard/ENST-drums/
5https://ccrma.stanford.edu/damp/

https://members.loria.fr/ALiutkus/kam/
https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/bass.html
https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/bass.html
https://perso.telecom-paristech.fr/grichard/ENST-drums/
https://ccrma.stanford.edu/damp/
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Discussion of state of the art

+ Stable, reasonable complexity and results

- Overfitting since multitrack data is quite limited

- Cannot make use of solo source recordings and mixtures

- Loss function

Goal: Learn from all data, combining discriminative and
generative strengths
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Theoretical framework

Intuition
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Theoretical framework

Derivation of unsupervised loss

Optimal separator qφ(s|m) = δ(fφ(m)− s) would estimate real
posterior perfectly: qφ(s|m) = p(s|m)

Thus marginal separator output outqφ(s) = Em∼pm qφ(s|m) is
equal to true source marginal ps(s) = Em∼pm p(s|m)

With source marginals outqkφ(sk) =
∫
{s1,...,sK}\{sk}

outqφ(s):

outqkφ
!

= pks , ∀ k = 1, . . . ,K

Necessary condition for optimal separator

Loss: Minimise divergence between source outputs:
Lu =

∑K
k=1D[outqkφ||pks ]
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Theoretical framework

Overall approach

Supervised loss: MSE:
Ls = 1

M

∑M
i=1 ||fφ(mi )− si ||2

Unsupervised loss:
Lu =

∑K
k=1D[outqkφ||pks ]

Additive loss Ladd: MSE between sum of sources from fφ(m)
and input m

Total loss:
L = Ls + αLu + βLadd
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Implementation using GANs
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Implementation using GANs

Divergence minimization with GANs

Generative adversarial nets: Powerful unsupervised method

Discriminator estimates divergence D between generator and
real distribution

Generator minimises divergence D

⇒ We use one discriminator per source to estimate the
Wasserstein distance W [outqkφ||pks ]
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Experimental setup

DSD100 as training, validation and test set

MedleyDB, iKala, CCMixter as unlabelled, validation and test
set

Avoids dataset bias

Train supervised and semi-supervised model with early
stopping

U-Net as separator, DCGAN as discriminator

With and without accompaniment discriminator
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Results
Performance

Test set DSD100 MedleyDB CCMixter iKala
Baseline V VA Baseline V VA Baseline V VA Baseline V VA Baseline V VA

SDR Inst. 8.09 8.89 8.55 11.11 10.75 10.76 9.40 9.60 9.65 10.65 11.09 10.89 6.34 7.71 7.13
SDR V. 6.80 7.28 7.47 3.74 3.17 3.54 2.48 2.43 3.00 3.25 3.52 3.70 9.50 10.47 10.52
SIR Inst. 12.03 12.58 12.67 14.46 13.56 13.86 12.18 12.07 12.74 15.99 15.49 16.08 10.42 11.79 11.57
SIR V. 13.72 14.00 14.45 10.03 9.92 10.49 9.40 9.21 9.48 8.39 8.94 9.35 16.98 17.44 17.90

SAR Inst. 11.27 12.05 11.40 14.20 14.60 14.10 13.94 14.23 13.45 12.84 13.69 13.24 9.43 10.42 9.70
SAR V. 8.54 9.00 9.04 5.50 4.84 5.12 4.71 4.69 5.20 6.43 6.17 6.17 10.81 11.83 11.73

Figure: Mean test set performance comparison on the test set and
subsets using the supervised baseline, a vocal discriminator (V) and both
vocal and accompaniment discriminators (VA)
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Results
Qualitative
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Figure: (a) A separator voice estimate x . (b) Gradients of the voice
discriminator output with respect to the input x .
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Summary

Current SotA methods only use multi-track data

Our approach also uses solo source recordings for improved
source prior

Combines discriminative and generative approach/loss

Performance improvement in singing voice separation
experiment
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Future work

More realistic dataset setup

Multi-instrument separation

Better discriminator architecture
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