

Conference submission under review

Daniel Stoller, Sebastian Ewert, Simon Dixon

Centre for Digital Music Queen Mary University London

SIGMA, 20.12.2017

¹https://arxiv.org/abs/1711.00048

Music source separation

- Task of MSS: Recover instrument sources from mixtures
- Applications:
 - Karaoke and instrumental versions
 - Remixing
 - Further analysis of sources: Preprocessing for
 - Singer identification
 - Transcription

Generative and discriminative approaches

- Generative approach [2, 6]
 - Model joint p(s₁,..., s_K, m) with source prior p_θ(s₁,..., s_K) and likelihood p(m|s₁,..., s_K)
 - Then given a mixture, infer likely sources (posterior inference)
 - Inference slow, models constrained for tractable inference
 - + Integration of prior knowledge
- Discriminative approach
 - Train $f_{\phi}(m)$ to estimate sources directly
 - Supervised training by ERM: arg min_φ E<sub>(m_i,s_i)~p_{data}[I(f_φ(m), s_i)]
 </sub>
 - + Simple, fast inference
 - Unclear how to define /

Experiment: Singing voice separation

Discussion and summary

Current state of the art

- Discriminative approaches [7, 5]
- Training on multitrack datasets
- Use neural network for f_{ϕ}
- Use MSE as loss /
- Estimation in spectral magnitude domain

Motivation	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Availa	ble data			

- Multitracks:
 - DSD100 [4]
 - MedleyDB [1]
 - CCMixter (Vocals only)²
 - iKala (Vocals only) [3]
- Solo instrument recordings:
 - Bass: IDMT bass notes ³
 - Drums: ENST-Drums ⁴
 - Vocals: DAMP (30,000 songs) ⁵
 - And many more
- Mixtures: Practically infinite

²https://members.loria.fr/ALiutkus/kam/ ³https:

//www.idmt.fraunhofer.de/en/business_units/m2d/smt/bass.html
 ⁴https://perso.telecom-paristech.fr/grichard/ENST-drums/
 ⁵https://ccrma.stanford.edu/damp/

Discussion and summary

Discussion of state of the art

- $+\,$ Stable, reasonable complexity and results
 - Overfitting since multitrack data is quite limited
 - Cannot make use of solo source recordings and mixtures
 - Loss function
- **Goal**: Learn from all data, combining discriminative and generative strengths

Motivation	State of the art	Proposed approach ●00000	Experiment: Singing voice separation	Discussion and summary
Theoretical fra	amework			
Outlin	е			

- 2 State of the art
- Proposed approach
 - Theoretical framework
 - Implementation using GANs
- 4 Experiment: Singing voice separation
- 5 Discussion and summary

Motivation	State of the art	Proposed approach o●oooo	Experiment: Singing voice separation	Discussion and summary
Theoretical fr	amework			
Intuiti	on			

Motivation State of the art

Proposed approach

Experiment: Singing voice separation

Discussion and summary

Theoretical framework

Derivation of unsupervised loss

- Optimal separator $q_{\phi}(\mathbf{s}|m) = \delta(f_{\phi}(m) \mathbf{s})$ would estimate real posterior perfectly: $q_{\phi}(\mathbf{s}|m) = p(\mathbf{s}|m)$
- Thus marginal separator output ${}^{\text{out}}q_{\phi}(\mathbf{s}) = E_{m \sim p_{\text{m}}} q_{\phi}(\mathbf{s}|m)$ is equal to true source marginal $p_{\text{s}}(\mathbf{s}) = E_{m \sim p_{\text{m}}} p(\mathbf{s}|m)$
- With source marginals ${}^{\text{out}}q_{\phi}^{k}(s^{k}) = \int_{\{s^{1},...,s^{K}\}\setminus\{s^{k}\}} {}^{\text{out}}q_{\phi}(\mathbf{s})$: ${}^{\text{out}}q_{\phi}^{k} \stackrel{!}{=} p_{s}^{k}, \ \forall \ k = 1, \ldots, K$
- Necessary condition for optimal separator
- Loss: Minimise divergence between source outputs: $L_{u} = \sum_{k=1}^{K} D[^{out}q_{\phi}^{k} || p_{s}^{k}]$

- Supervised loss: MSE: $L_{s} = \frac{1}{M} \sum_{i=1}^{M} ||f_{\phi}(m_{i}) - \mathbf{s}_{i}||_{2}$
- Unsupervised loss: $L_{u} = \sum_{k=1}^{K} D[^{out}q_{\phi}^{k} || p_{s}^{k}]$
- Additive loss L_{add} : MSE between sum of sources from $f_{\phi}(m)$ and input m
- Total loss:

 $\mathbf{L} = \mathbf{L}_{\mathsf{s}} + \alpha \mathbf{L}_{\mathsf{u}} + \beta \mathbf{L}_{\mathsf{add}}$

Motivation	State of the art	Proposed approach ○○○○●○	Experiment: Singing voice separation	Discussion and summary
Implementatio	n using GANs			
Outline	e			

- 2 State of the art
- O Proposed approach
 - Theoretical framework
 - Implementation using GANs
- Experiment: Singing voice separation
- 5 Discussion and summary

Motivation State of the

Proposed approach

Experiment: Singing voice separation

Discussion and summary

Implementation using GANs

Divergence minimization with GANs

- Generative adversarial nets: Powerful unsupervised method
- Discriminator estimates divergence D between generator and real distribution
- Generator minimises divergence D
- ⇒ We use one discriminator per source to estimate the Wasserstein distance $W[^{out}q_{\phi}^{k}||p_{s}^{k}]$

- DSD100 as training, validation and test set
- MedleyDB, iKala, CCMixter as unlabelled, validation and test set
- Avoids dataset bias
- Train supervised and semi-supervised model with early stopping
- U-Net as separator, DCGAN as discriminator
- With and without accompaniment discriminator

Motivation		the	

Proposed approach

Experiment: Singing voice separation

Discussion and summary

Results Performance

		Test set		0	OSD100		M	ledleyDB		C	CMixter			iKala	
	Baseline	V	VA	Baseline	V	VA	Baseline	V	VA	Baseline	V	VA	Baseline	V	VA
SDR Inst.	8.09	8.89	8.55	11.11	10.75	10.76	9.40	9.60	9.65	10.65	11.09	10.89	6.34	7.71	7.13
SDR V.	6.80	7.28	7.47	3.74	3.17	3.54	2.48	2.43	3.00	3.25	3.52	3.70	9.50	10.47	10.52
SIR Inst.	12.03	12.58	12.67	14.46	13.56	13.86	12.18	12.07	12.74	15.99	15.49	16.08	10.42	11.79	11.57
SIR V.	13.72	14.00	14.45	10.03	9.92	10.49	9.40	9.21	9.48	8.39	8.94	9.35	16.98	17.44	17.90
SAR Inst.	11.27	12.05	11.40	14.20	14.60	14.10	13.94	14.23	13.45	12.84	13.69	13.24	9.43	10.42	9.70
SAR V.	8.54	9.00	9.04	5.50	4.84	5.12	4.71	4.69	5.20	6.43	6.17	6.17	10.81	11.83	11.73

Figure: Mean test set performance comparison on the test set and subsets using the supervised baseline, a vocal discriminator (V) and both vocal and accompaniment discriminators (VA)

Figure: (a) A separator voice estimate x. (b) Gradients of the voice discriminator output with respect to the input x.

Motivation	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Summ	arv			

- Current SotA methods only use multi-track data
- Our approach also uses solo source recordings for improved source prior
- Combines discriminative and generative approach/loss
- Performance improvement in singing voice separation experiment

Motivation	State of the art	Proposed approach	Experiment: Singing voice separation	Discussion and summary
Future	e work			

- More realistic dataset setup
- Multi-instrument separation
- Better discriminator architecture

R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and J. Bello.

MedleyDB: A multitrack dataset for annotation-intensive MIR research.

In in Proc. the 15th International Society for Music Information Retrieval Conference (ISMIR, 2014.

A. T. Cemgil, C. Févotte, and S. J. Godsill. Variational and stochastic inference for bayesian source separation.

Digital Signal Processing, 17(5):891–913, 2007.

T.-S. Chan, T.-C. Yeh, Z.-C. Fan, H.-W. Chen, L. Su, Y.-H. Yang, and R. Jang.

Vocal activity informed singing voice separation with the ikala dataset.

In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 718–722. IEEE, 2015. Motivation State of the

A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito, N. Ono, and J. Fontecave.

The 2016 signal separation evaluation campaign.

In Proceedings of the International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA), pages 323–332, 2017.

A. A. Nugraha, A. Liutkus, and E. Vincent.
 Multichannel audio source separation with deep neural networks.
 PhD thesis, Inria, 2015.

A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval. Adaptation of bayesian models for single-channel source separation and its application to voice/music separation in popular songs.

IEEE Transactions on Audio, Speech, and Language Processing, 15(5):1564–1578, 2007.

Motivation State of the

Proposed approach

Experiment: Singing voice separation

Discussion and summary

S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji.

Improving music source separation based on deep neural networks through data augmentation and network blending. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 261–265, March 2017.