Errata for the book *Music Data Analysis: Foundations and Applications* by Claus Weihs, Dietmar Jannach, Igor Vatolkin and Günter Rudolph (Eds.)

Department of Statistics and Department of Computer Science TU Dortmund University, Germany

September 30, 2017

Notation

Unfortunately, some errors have been found already.

In this document, we will explain which parts contain errors (marked " \leftarrow ") and are to be replaced by parts marked " \rightarrow ".

Text to be removed is printed in red, new text in blue color.

1. Introduction

- 2. The Musical Signal: Physically and Psychologically
- 3. Musical Structures and Their Perception
- 4. Digital Filters and Spectral Analysis
- 5. Signal-Level Features
- 6. Auditory Models
- 7. Digital Representation of Music
- 8. Music Data: Beyond the Signal Level

9. Statistical Methods

- \leftarrow (page 226) ... 14 chroma features.
- $\rightarrow \ldots 14$ timbre features.
- \leftarrow (page 226) As chroma features we rely on ...
- \rightarrow As timbre features we rely on . . .
- \leftarrow (page 226) The windowed MFCCs and the chroma variables . . .
- \rightarrow The windowed MFCCs and the timbre variables . . .

 \leftarrow (page 253, Figure 9.9,left) x-axis label "non-windowed MFCC 1", y-axis label "MFCC 1 in block 1" \rightarrow x-axis label "MFCC 1 in block 1", y-axis label "non-windowed MFCC 1"

- \leftarrow (page 253) ... the MFCCs and the chroma features introduced in Example 9.9.
- $\rightarrow \ldots$ the MFCCs and the timbre features introduced in Example 9.9.
- \leftarrow (page 256) If the time unit is a second, n is also measured in Hz.
- \rightarrow If the time unit is a second, f is also measured in Hz.
- \leftarrow (page 257) K = number of simultaneously played tones,
- \rightarrow J = number of simultaneously played tones,
- \leftarrow (page 259) There are, e.g., 14 chroma variables of block 1.
- \rightarrow There are, e.g., 14 timbre variables of block 1.
- \leftarrow (page 261) ..., this time the 14 chroma variables of block 1.
- \rightarrow ..., this time the 14 timbre variables of block 1.
- \leftarrow (page 261; Figure 9.12, Biplot) "chroma" labels
- \rightarrow "timbre" labels
- \leftarrow (page 261; Figure 9.12, caption) First 2 principal components of 14 chroma vectors
- \rightarrow First 2 principal components of 14 timbre vectors

 \leftarrow (page 262; Figure 9.13) x-axis "Chroma 1 in block 1" label, y-axis "Chroma 2 in block 1" label

 \rightarrow x-axis "Timbre 1 in block 1" label, y-axis "Timbre 2 in block 1" label}

 \leftarrow (page 262; Figure 9.13, caption) First 2 original chroma vectors.

 \rightarrow First 2 original timbre vectors.

 \leftarrow (page 262) . . . directions of the first two chroma elements . . .

 $\rightarrow \ldots directions$ of the first two timbre elements \ldots

 \leftarrow (page 262) The other chroma elements ...

 \rightarrow The other timbre elements . . .

 $\leftarrow (page 262) \dots the first two original chroma elements \dots \\ \rightarrow \dots the first two original timbre elements \dots$

10. Optimization

11. Unsupervised Learning

← (page 290) ... and windowed), chroma variables, ... → ... and windowed), timbre variables, ...

 \leftarrow (page 297) . . . and the 14 chroma features of block 1.

 $\rightarrow \ldots {\rm and}$ the 14 timbre features of block 1.

 \leftarrow (page 297) ... contains both MFCC and chroma features.

 $\rightarrow \ldots {\rm contains}$ both MFCC and timbre features.

 \leftarrow (page 297) ... otherwise containing only chroma features.

 $\rightarrow \ldots otherwise$ containing only timbre features.

 \leftarrow (page 297) ... than to the chroma features, ...

 $\rightarrow \ldots$ than to the timbre features, \ldots

 \leftarrow (page 298, Figure 11.6) chroma labels

 \rightarrow timbre labels

12. Supervised Classification

13. Evaluation

 \leftarrow (page 333, Figure 13.1(c), first split, right) > 0.541 $\rightarrow > 0.493$

 \leftarrow (page 333, Figure 13.1(d), first split, right) > 0.541 $\rightarrow > 0.493$

 \leftarrow (page 355, Example 13.9) The only values we have to calculate are H_{FT} and H_{TF} on the test sample. \rightarrow The only values we have to calculate are H_{FT} and H_{TF} on the test sample, where the instances are the 120 complete music tracks, i.e. we aggregate the predictions using Equation (13.19).

14. Feature Processing

15. Feature Selection

 $\leftarrow \text{(page 397; Equation 15.9)} \ P(c) = \frac{\sum_{\substack{yw=1\\ yw=c}}^{W}}{G}^{1} \\ \rightarrow P(c) = \frac{\sum_{\substack{w=1\\ yw=c}}^{W}}{W}^{1}$

 $\leftarrow \text{(page 402; Definition 15.5)} \ m_1(\boldsymbol{y}, \hat{\boldsymbol{y}}, \Phi(\mathcal{F}, \mathbf{p})) \\ \rightarrow m_1(\boldsymbol{y}, \hat{\boldsymbol{y}}, \Phi(\mathcal{F}, \boldsymbol{q}))$

- 16. Segmentation
- 17. Transcription
- 18. Instrument Recognition
- 19. Chord Recognition
- 20. Tempo Estimation
- 21. Emotions
- 22. Similarity-Based Organization of Music Collections
- 23. Music Recommendation
- 24. Automatic Composition
- 25. Implementation Architectures
- 26. User Interaction
- 27. Hardware Architectures for Music Classification