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Chapter 1

Organization of Exercises

In what follows you will find a description of the organization of the exercises.

e Fach chapter has simple and more elaborated exercises. Simple exercises can, e.g., be found in

Exercises and

o There are theoretical and practical exercises. Practical exercises can, e.g., be found in Exercises

and [IL]

e The practical exercises either rely on artificial data or data from the data sets published on the
web site. A list of such data sets and their contents can be found in Appendix [A] "Databases for
Exercises” in this exercise book.

In order to include the data from the data sets, please
1. download the file “data_exercisesMDA.zip” from the book website
http://sig-ma.de/music-data-analysis-book into an internal directory,
2. unpack the .zip-file, and

3. replace the dots ... in the dummy data set name of the code, e.g. in
...\Data\Auditory_Models\, by the internal directory name.

The solutions of the exercises are only given in the solution book, which includes theoretical solutions
as well as computer programs (in R, Matlab, or Python) and the corresponding results for the
practical exercises.

If you are a university instructor giving a course on “Music Data Analysis” or a related topic, you
can ask for the solutions manual by writing an e-mail to orders@taylorandfrancis. com indicating
your name, position, and the course you are responsible for.

For the solutions we have prepared (and will continue to do so) R- and Matlab-functions to
simplify the task. A list of such functions and their code can be found in Appendix [B| “R- and
Matlab-Functions for Exercises” in this exercise book.

e For each chapter there are chapter-specific exercises related to the higher-level topics specified
below; such exercises are marked accordingly.

e As higher-level topics we have identified the four musical moments (see Chapter 2 in the book)

— pitch (including chroma, chords, harmony, and key),
— volume (including loudness, energy, rests, vibrato, and amplitude modulation),

— timbre (including MFCC, spectrogram, formants, transients, instrument recognition, emo-
tions), and

— duration (including rhythm, measure, onset detection, ASDR identification, structure identi-
fication, tempo recognition)

as well as the topic
— genre (including music recommendation and organization).

e The exercises corresponding to higher-level topics are listed in Appendix [C| “List of Exercises for
Higher-level Topics” in this exercise book.


http://sig-ma.de/music-data-analysis-book
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Exercises



Chapter 2

The Musical Signal

(Sebastian Knoche and Martin Ebeling)

Basic Exercises

Exercise 2.1 [Pitch - Equal Temperament]

Equal temperament: What are the frequencies in Hz on the equally tempered scale for K = —24 and
k= —-207

Exercise 2.2 [Timbre - Cylindric Instruments]

The timbre of cylindric musical instruments (with one end closed and one end open) is mainly determined
by odd multiples of the fundamental, see Chapter 2.4.7 in the book. Look at the periodograms (magnitude
of DFT) of the clarinet and flute sounds in the Spectrum database (see Appendix . Compare the
corresponding plots with the theoretical result. How are the results related to the boundary conditions
at the two ends of the instruments? For plotting the periodograms in R, you can use the function

plot_spectrum() (see Appendix [B.11]).

Exercise 2.3 [Volume - Sound Pressure Level and Loudness]

One sound source produces, in a given distance, a sound pressure level of L,; = 80dB. We add a second
source which is identical to the first one. The resulting sound is an incoherent superposition. Which
sound pressure level Lyo has the combined sound of the two identical sources?

Let us assume that the two sounds are tones around 1000 Hz. Which loudness (on the sone scale) is
produced by the first (single) sound source and the two (combined) sources?

Exercise 2.4 [Pitch - Modulation, Psychoacoustics]

Consider an amplitude modulated tone with a carrier frequency of w. = 1100 Hz, a modulation frequency
of wy, = 220Hz and a modulation depth of m. Which tonal percepts are presumable?

Advanced Exercises

Exercise 2.5 [Pitch / Volume - Amplitude Modulation and Vibrato]

Amplitude modulation and vibrato are two different aspects of pitch / volume variation. Please consider
the following formulas for these aspects:

for vibrato: w(t) = w. + Aw cos(wmt), where w, is the frequency of the pure sine and w,, is the vibrato
frequency (see Formula (2.31) in the book), leading to

x(t) = A sinfwet + Bsin(wmt + ¢)], 8 := Aw/wy, (see Formula (2.33)), and for

amplitude modulation: z(t) = A[1+m cos(wmt + ¢)] sin(wt), where m is the modulation depth and w;,
the modulation frequency, leading to

x(t) = Alsin(wet) + & sin([we — win]t — @) + F sin([we + W]t + @)] (see Section 2.3.4).



Please note that the modulation depth m is independent of the modulation frequency w,, and that
w = f27/fs, where f is the frequency in Hz and f; is the sampling frequency.

Please study the periodograms and the plots of the waves for different values for the frequencies w, and
wy, and for the other constants, e.g.

we =440 Hz, w,, =8 Hz, Aw =16, = 0,A =1,m = 1/3, and f, = 44100 Hz.

What are the differences between the periodograms of vibrato and amplitude modulation of a tone with
frequency w. and to the periodogram of the pure sine with frequency w.? What can be seen if you plot
the pure sine against the vibrato added version and the amplitude modulated version? Use the package
tuneR to play the tones.

Exercise 2.6 [Timbre - Cylindric Instruments]

Repeat the calculation of the eigenmodes of a cylindrical instrument, see Chapter 2.4.7 in the book, this
time for two open ends, which corresponds to the case of a flute.

At first, show that the function ¢(z,t) = Asin(wt)sin(wz/c) is a solution of the wave equation
bz, t) — ¢ (z,t) = 0.

As the flute is open at both ends, the pressure is forced to be close to the atmospheric pressure. The
appropriate boundary conditions, if the pipe ranges from z = 0 to L, thus read ci)(O,t) = QB(L,t) = 0.
Determine the spectrum w, of frequencies for which the solution satisfies these boundary conditions.
Compare your results with the periodograms you calculated in Exercise

Exercise 2.7 [Volume - Wave Equation]

In many cases, sound is radiated by a source in all directions of the three-dimensional space. For such
problems, the wave-equation may be written in spherical coordinates, in which a point in space is defined
by its radial distance r from the origin, the polar angle 6 and the azimuthal angle ¢. Considering
only waves that are independent from the angles 0, ¢, the three-dimensional wave equation in spherical

coordinates reads ) )

? 210 _
@ (7‘7 t) —C ;ﬁ (7’ ¢(r7 t)) = 0. (2'1)

Show that functions of the form ¢4 (r,t) = f(r £ ct)/r are solutions of the wave equation and interpret
them. How do the sound pressure p* = —pgd¢/dt, velocity v = €,0¢/0r and intensity I = p* - v scale
with the radial distance r?

Exercise 2.8 [Timbre - Musical Acoustics]

Hermann v. Helmholtz was the first to determine the spectrum of a bowed string. He attached a tiny
grain of cornstarch to a string and observed its movements through an oscilloscope (a special microscope
he had constructed) when the string was bowed. He saw certain Lissajous figures from which he concluded
that the motion of a bowed string equals a sawtooth wave. He could read the spectrum of the bowed
string from the Fourier series of the sawtooth wave. Try and do the same.



Chapter 3

Musical Structures
(Martin Ebeling)

Basic Exercises

Exercise 3.1 [Pitch - Intervall]

Which musical interval corresponds to the two frequencies in Exercise Does this interval represent
a consonance or a dissonance?

Exercise 3.2 [Pitch - Intervals, Consonance]

The Generalized Coincidence Function (GCF) shows the different degrees of neuronal coincidence of the
musically relevant intervals within the range of an octave. Order these intervals according to their degrees
of neuronal coincidence as can be read from the GCF (from the highest to the lowest degree) and add the
vibration ratios of the intervals. Compare this with the intervals between the harmonics of the overtone
series.



Six German folksongs

a) "Kommt, und laBt uns tanzen"

Figure 3.1: Six German folksongs

Exercise 3.3 [Duration / Pitch - Measure, Meter, Key of Melodies]

Fig. shows six German folksongs. Determine their measures, meters, and keys.

Exercise 3.4 [Pitch - Tuning Systems]

Over centuries, the issue of tuning systems had extensively been debated until in the 19th century the
equal temperament became a commonly accepted compromise.

a) Compute the differences in cent between the pure intonation and the equal temperament of the
intervals of Exercise B2l Which differences are audible?

b) In the Pythagorean system the twelve chromatic tones are deduced from the pure fifth. Starting
from the tone ¢, twelve successive fifths end up on the tone his which corresponds to the tone ¢ under
an enharmonic change. Compute their differences in cent.
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Figure 3.2: The aeolian modus of fux

Advanced Exercises

Exercise 3.5 [Pitch - Counterpoint]

To compose a good vocal line against a cantus firmus following the rigid rules of the craft of counterpoint
is not an easy task. Fig. shows Fux’s aeolian mode. Write 1:1 counterpoints with two parts. The
cantus firmus can be the melody of the upper or lower part.

Exercise 3.6 [Pitch/Volume/Timbre/Duration - Gestalt]

To conceive a Gestalt, its structure must become obvious already at the moment of perception. The
comprehension of all parts of a Gestalt and their mutual relations are natural and self-evident. The
famous German Philosopher and co-founder of the scientific psychology Carl Stumpf (1848-1936) stated
that there are four basic relations:

e plurality - Mehrheit

e likeness - Ahnlichkeit
e increase - Steigerung

e fusion - Verschmelzung

Discuss these relations in the context of the four tonal moments.

Exercise 3.7 [Pitch - Harmony]
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Figure 3.3: Chords in root position or inverted.

Analyse the chords of figure determine the root, the type of chord, and its inversion. Further
consider which keys these chords could belong to.
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J.S. Bach: Fugetta super "Gelobet seist du, Jesu Christ"
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Figure 3.4: J.S. Bach: Fugetta super ”Gelobet seist Du, Jesu Christ”

Exercise 3.8 [Pitch/Volume/Timbre/Duration - Analysis]

The Fugetta super ”Gelobet seist Du, Jesu Christ” by J.S. Bach (see Fig. is a choral prelude which
introduces the choral sung by the congregation during the religious service. It is a masterpiece of baroque
counterpoint. The first notes of the choral serve as a theme of a little fugue to which Bach adds a lively
counterpoint in another voice. Find out all entries of the theme and the counterpoint. Which is the key
of the prelude? On which harmony does it finish and why?

11



Chapter 4

Digital Filters and Spectral Analysis

(Rainer Martin and Anil Nagathil)

Audio data used in these exercises:

Exercises 4.4, 4.6 and 4.7 use clip 20 of the ”1000 Songs Database” (Soleymani, M., Caro, M., Schmidt,
E. , Sha, C. and Yang, Y., CrowdMM workshop, ACM Multimedia 2013.) Alternatively, you can also
use your own audio signals. For exercise 4.4 the sampling frequency is fs = 16 kHz while for the other
two exercises the sampling frequency has to be f; = 32 kHz.

Basic Exercises

Exercise 4.1 [Pitch - Linear System]

A first-order linear time-invariant system is specified via the difference equation

ylk] = z[k] — z[k —1] . (4.1)
e Compute the impulse response and the frequency response as a function of normalized frequency
Q=21
fs

Plot the magnitude response and the phase response in the range —27 < Q) < 27.

Is the phase response of this system linear? Compute the group delay.

e Discuss possible applications of this system.

Exercise 4.2 [Pitch / Timbre - Filter Design]

A music signal is sampled at a sampling frequency of f; = 16 kHz. We like to design a low-pass filter
and a high-pass filter to extract the lower third and the upper third of the available audio bandwidth,
respectively. The filters shall have a minimum stopband attenuation of 80 dB. The width of the transition
band is 1 kHz.

e How large is the maximum audio bandwidth of the music signal?

e Use the modified Fourier approximation and the Kaiser window to design the filters. In a first
step, estimate the required filter order. Plot the impulse response of the filters and the frequency
responses, the latter separately for the magnitude and the phase.

e Use the Chebychev approximation to design the filters. In a first step, estimate the required filter
order. Plot the impulse responses of the filters and the frequency responses, the latter separately
for the magnitude and the phase.

e Do the resulting filters have the linear-phase property? Compute the group delay of the filters.

Hints:

e In MATLAB, you could use the signal processing toolbox, which includes functions like fir1 ()
and firpm() to design the filters. The window function is generated using the function kaiser().
Plots of the frequency response are obtained via the function freqz(). Alternatively, you could use
the fdatool which provides a GUI to access the filter design tools in a user-friendly way.

12



Exercise 4.3 [Pitch - Spectral Analysis]

A musical note has a fundamental frequency of 220 Hz and is processed with a sampling frequency of
fs = 32 kHz. Specify the minimum length of the DFT such that the fundamental frequency and its
harmonics can be resolved, assuming that either a rectangular window or a Hann window is employed in
the spectral analysis.

Exercise 4.4 [Timbre - Signal Power]

Apply the filters of Exercise 4.2 to a music signal and compute running estimates of the short-term signal
power in the low frequency band and in the high frequency band. These power estimates should be
implemented in terms of first-order recursive systems according to

Plk] = aP[k — 1]+ (1 — a)2?[K] (4.2)

where x[k] denotes the lowpass-filtered or highpass-filtered signal and « a2 0.9 is the smoothing parameter.

e Plot the waveform of the music signal and the short-time power of the two frequency bands as a
function of time.

e Relate the estimated signal powers to the music signal and interpret your results.

Advanced Exercises

Exercise 4.5 [Timbre - Spectral Transforms]

Produce the DFT and the Constant-Q-transform (CQT) spectra of pure sine tones with the funda-
mental frequencies f = 272440 Hz and f = 275/3440 Hz, and of the superposition of these tones. Discuss
the differences. The sampling rate and the DFT length should be set to fs = 44.1 kHz and M = 1024,
respectively. For the CQT, the smallest analysis frequency is set to fimin = 55 Hz and the largest analysis
frequency to the Nyquist rate. The resolution of the CQT is set to one CQT band per semitone.

Exercise 4.6 [Timbre - Filter Bank]

In this Exercise we will decompose a music signal into frequency subbands using a bank of 32 digital
filters. The music signal is sampled at a sampling rate of f; = 32 kHz.

e Using the methodology outlined in Section 4.6.1, design a filter bank with 32 filters which are
uniformly spaced across the full frequency range up to the sampling frequency. These filters shall
add up to an overall response with unit gain and achieve a sideband attenuation of at least 60 dB.
You may use a Kaiser window with an appropriate shape parameter in this design. The impulse
response of the prototyp lowpass filter shall have 101 coeflicients.

e Plot the individual and overall frequency responses.

e Plot a spectrogram of a music signal using this filter bank.

Exercise 4.7 [Timbre - Gammatone Filter Bank]

In this exercise we like to design a bank of 4th-order Gammatone filters as outlined in Section 4.6.2. The
filter bank should be comprised of 21 filters. The center frequencies of these filters should be arranged at
intervals one ERB (equivalent rectangular bandwidth) with the lowest band at 10 ERB and the highest
band at 30 ERB. The mapping of ERB scale to frequency shall be given by

ERB

10217 — 1

F= 0.00437 (4.3)

e Compute a vector of center frequencies (in Hz) for the filter bank as specified above.
e Compute the impulse responses of the 21 Gammatone filters.

e Plot the individual frequency responses for all filters and overall frequency response.

13



e Plot a spectrogram of a music signal using this filter bank and compare your result to exercise 4.6.

Hints:

Exercise 4.8 [Pitch - Autocorrelation]

Show, how fundamental frequencies can be identified by means of the short-time autocorrelation func-
tion (ACF) (Equation (4.43)) and the mean squared difference (YIN algorithm) (Equation (4.44)),
when decaying sinusoidal signals with frequencies f = 272440 Hz and f = 27°/3440 Hz are given. The
sampling frequency of these signals is set to f; = 44.1 kHz. The amplitudes of these signals decay
according to (0.95)%.

First, generate and plot these signals. Then, apply ACF and YIN individually to the two sinusoidal
signals and to their superposition. Try N = 500, N = 1000 and N = 2000 for the number of signal
samples. Apply ACF and YIN also to the superposition of f = 110 Hz and its 3¢ and 5" (odd) partials.
Is there a difference to the results above?

Hints:

e The R package tuneR includes some helpful functions to create sinusoidal tones.

e Additionally, we have prepared R functions ACF and YIN for the autocorrelation function and the

mean squared difference.

e In MATLAB, you could use the signal processing toolbox, which includes functions like xcorr ()

and findpeaks().

14



Chapter 5

Signal-level Features
(Anil Nagathil and Rainer Martin)

Basic Exercises

Exercise 5.1 [Pitch - Mel Scale]

What are the mel frequencies of the tones with the fundamental frequencies in Exercise [2.1]f

Exercise 5.2 [Timbre - Zero Crossings]

Consider a sinusoidal signal and a noise signal. Explain why the noise signal has a higher zero-crossing
rate.

Exercise 5.3 [Timbre - Clarinet]

What value do you expect for the even-harmonic energy ratio when you compute it for clarinet sounds?

Exercise 5.4 [Duration - Onset Detection]

Explain why the spectral flux can be used to detect note onsets and for what type of instruments it is
particularly suited.

Advanced Exercises

Exercise 5.5 [Timbre - Spectral Centroid]

Assume, that the discrete magnitude spectrum of a harmonic tone can be modeled by

Alpl =) a" bl —n Ko,

where N denotes the number of harmonics to be considered, a determines the attenuation of the harmonics
with 0 < a < 1, Ky denotes the frequency bin corresponding to the fundamental frequency of the tone,
and

1, u=0,
Olul = { 0, otherwise (5.1)
is the Kronecker delta.
a) Sketch A[u] for
(1) Ko =20,a=0.9, N =10,
(2) Ko =30, a =0.5, N =5, respectively.
b) Explain why A[u] is not a valid harmonic model for a clarinet tone. How would you modify the model
to make it suitable for clarinet sounds?
¢) Derive a closed-form expression of the spectral centroid as a function of Ky, N, and a, with a < 1.
d) Compute the values of the spectral centroid for the sketched examples.

15



Exercise 5.6 [Timbre - Spectral Spread and Skewness]

Write a function in R or MATLAB which first computes the STET representation of an input signal and
then calculates the spectral spread and the spectral skewness. Choose fs = 44100 Hz, M = 2048, and
R = 64 as the sampling frequency, the segment length, and the segment shift, respectively.

Use this function to obtain the spectral spread and skewness values for clarinet sounds, oboe sounds,
and violin sounds with different fundamental frequencies. Visualize these features using a scatterplot and
discuss whether they can distinguish sounds from the three instruments.

Exercise 5.7 [Timbre - MFCCs]

Explain which property of a signal is described by MFCCs and why it makes sense to use MFCCs to
characterize timbre.

Exercise 5.8 [Pitch - Chromal]

a) Write a function in R or MATLAB which computes the Chroma and CENS features of a music signal
based on its STFT representation. Choose fs = 44100 Hz, M = 2048, and R = 64 as the sampling
frequency, the segment length, and the segment shift, respectively. For computing the CENS features use
a decimation factor of 20.

b) What is the resulting feature rate of the Chroma and CENS features, respectively?

c¢) Use your function to obtain the Chroma and CENS feature series for isolated notes played on different
instruments. Explain why often two notes are prominent in the chromagram although only one note is
played.

16



Chapter 6

Auditory Models

(Klaus Friedrichs and Claus Weihs)

Basic Exercises

Exercise 6.1 [Pitch - Sine Tone]

Please download the auditory model of Meddis (MATLAB code)ﬂ In the standard settings of the
model three different fiber types with different thresholds are considered. For simplification, we are only
interested in one of these types. To change this, open the file userPrograms/ runMAP1_ 1. m| and make
the following modification: In line 93 set

paramChanges={’IHCpreSynapseParams.tauCa= 86e-6;’};

Generate a model output for a pure sine tone with the following properties (parameters are named
as in the code): F0 = 440Hz, duration = 0.1s, sampleRate = 44100H z, rampDuration = 0.005s,
leveldBSPL = 50, beginSilence = 0.01s and endSilence = 0.1s.

Exercise 6.2 [Pitch - Harmonic Tone]

Generate a model output for a harmonic tone (6 partials with identical intensities) with the follow-
ing properties: F0 = 440Hz, duration = 0.1s, sampleRate = 44100H z, rampDuration = 0.005s,
leveldBSPL = 50, beginSilence = 0.01s and endSilence = 0.1s. What are the main differences of the
output compared to the sine tone of Exercise

Exercise 6.3 [Pitch - Sine Tone]

Consider the release rates (neural activity) of the auditory model for a pure sine tone with a frequency
of 440 Hz. Visualize the mean release rates of each channel. Which one has the hightest activity? Can
you explain the result?

Hint: Type in the command window

global  ANprobRateQOutput

before you run the model in order to get the matrix of the release rates.

Exercise 6.4 [Pitch - DFT]

Consider again a pure sine tone with a frequency of 440 Hz. Visualize the DFT magnitude for the release
rates of the channels 1, 9, 15, 26 and 41. Are there any differences between the channels outputs? Please
discuss the result.

Thttp://www.essexpsychology.macmate.me/resources/software/MAP1_14h-public.zip

17


userPrograms/runMAP1_14.m
http://www.essexpsychology.macmate.me/resources/software/MAP1_14h-public.zip

Chapter 6 — Advanced Exercises

Exercise 6.5 [Pitch - Harmonic Tone]

Consider the synthetic complex tone of Exercise Repeat the tasks of Exercise [6.3| and Exercise [6.4]
What are the differences in comparison to the pure tone? Repeat the Exercise for a tone with 5 overtones.

Exercise 6.6 [Timbre - Real Tones]

Consider real tones of cello, clarinet, flute and trumpet (A4 = 440 Hz). You can find the release rates
for such tones in the files “cello_,ANoutput.csv”, “clarinet_ANoutput.csv”, “flute_ANoutput”’.csv and
“trumpet_ANoutput.csv”. Repeat the tasks of Exercise[6.3] What are the differences between the different
instruments? Please compare the results also to the synthetic tones of Exercise [6.5

Exercise 6.7 [Pitch - Fundamental Frequency]

Show, how the fundamental frequency can be identified by means of the summarized autocorrelation
function (SACF) as given in Equation 6.2. Exemplify this for the harmonic tone of Exercise Visu-
alize the SACF for lags [ = 0,1,...,1000. Which frequency corresponds to the maximum peak?

Hint: In MATLAB the function xcorr(y, maxLag) of the Signal Processing Toolbox returns the
autocorrelation sequence for the range from -maxlag to maxleg.

Exercise 6.8 [Timbre - Characteristics]

Most of the features (characteristics) discussed in chapter 5 can be adopted to the auditory output in a
channel-wise manner. Consider the feature spectral centroid (see Definition 5.3 in chapter 5). Extract
this feature for the complex tone of Exercise from all 41 channels seperately. Discuss the differences
of the feature for the different channels. How do these values change if the tone consists of 1 or 3 partials?
How does they change to a transposition to 220 Hz?

Hint: You can use the MIRtoolbox? for feature extraction.

%https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

18
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Chapter 7

Digital Representation of Music

(Giinter Rudolph)

Basic Exercises

Exercise 7.1 [Pitch - Helmholtz System]

What are the labels of the tones with the fundamental frequencies in Exercise in the Helmholtz
system? What are the MIDI numbers for the fundamental frequencies in Exercise [2.1]/

Exercise 7.2 [Pitch - Key]

Suppose you want to specify the key A major as a key signature event in the header of a standard MIDI
file. How many bytes are necessary and which are their values?

Exercise 7.3 [MP3 Format]

Suppose you have detected a candidate for a frame header of an MP3 file or data stream with binary
representation

1111 1111 1111 1011 0111 0100 1100 1100.

Argue why these 32 bits cannot be rejected as a possible MP3 frame header.

Exercise 7.4 [Duration - MIDI]

Explain the concept of note length in MIDI and how to specify half, quarter, and eighth notes assuming
nonuse of the LTC time code.

Advanced Exercises

Exercise 7.5 [Pitch - Key]

Transpose the melody of Example 7.1 in the book to G major and change the file in abc format accordingly.
Use some tool like abcm2ps to view the score.

Exercise 7.6 [Duration - Quantization]

Which sequence of octal code words results from the quantization of Example 7.4 in the book if we use
8 instead of 16 levels and a doubled sample interval?

Exercise 7.7 [Data Compression]

Suppose you have detected a frame header of an MP3 data stream with binary representation

1111 1111 1111 1011 0111 0100 1100 1100.

19



If the compressed LPCM-encoded data stream has 2'® quantization levels, which compression ratio has
been realized?

Exercise 7.8 [Duration - Meter]

Change the MusicTEX code of Example 7.6 in the book, such that the duration of each note and pause
is halved. Moreover, change the meter to 2/4. Show the score generated from your code.

20



Chapter 8

Music Data: Beyond the Signal Level

(Dietmar Jannach, Igor Vatolkin, and Geoffray Bonnin)

Basic Exercises

Exercise 8.1 [Semantic Features]

What is meant by “semantic features” (in contrast to signal-level features)? List examples of such
semantic features. Give examples in which such semantic features are helpful in music applications.

Exercise 8.2 [Deriving High-Level Features]

Describe in general terms how supervised classification techniques and in particular the Sliding Feature
Detection technique can be used to derive high-level features.

Exercise 8.3 [Types of Additional Information]

Analyze the public APIs of the developer websites of last.fm (http://www.last.fm/de/api) and The Echo
Nest (http://developer.echonest.com/). Describe which types of information can be accessed from these
sites and discuss commonalities and differences.

Exercise 8.4 [Relevance of Terms in Lyrics]

Describe the general principle of the TF-IDF representation of text documents.

Advanced Exercises

Exercise 8.5 [Tags]

The file playlists50.csv contains 50 playlists with Last.FM listener tags and EchoNest features. Write the
MATLAB code which estimates the most frequent 15 tags. Can these tags be used for genre or emotion
prediction? For music recommendation? Discuss the problems.

Exercise 8.6 [Tags, Regression]

1. playlists50.csv stores values for several EchoNest features and strengths of tags. Write the MATLAB
function which searches for the tag strengths and values of EchoNest features in playlists50.csv. Use
function val = findValue(string,name) as the header (in the string it is searched for the value
of a feature or the strength of a tag with a given name). When the tag is not found, set the output
to NaN (not a number).

2. Extend the code from Exercise to measure the regression between 7 EchoNest features and 15
most frequent tags. Set the feature names with the following code:

featureNames = {’"hotttnesss"’,’"loudness"’,’"tempo"’,’"danceability"’,
) llkeyll ) J Ilmodell ) J Ilenergyll J } .
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Use only observations for regression for which the tag strengths are existing. Output the three
combinations of a tag and a feature with the highest R? value (goodness of fit, cf. Definition ?7?).
For the regression, use the function [*,g] = fit(currFeature,currTag, ’ polyl’).

Exercise 8.7 [Lyrics]

Load the file lyrics50.csv with lyrics for 50 playlists. Write the MATLAB code for the estimation of
TF-IDF for the following words: always, but, christmas, city, feel, love, think, you, world, yeah. For the
description of TF-IDF, see Section 8.7. Instead of normalization by the frequency of other words after
Equation 8.1, normalize by the overall number of occurrences of the term across all lyrics.

Exercise 8.8 [Genre - Correlation to Characteristics]

In the final exercise, let us calculate the correlation between different music descriptors. Write the
MATLAB code, which measures the correlation between all possible pairs between words represented by
their TF-IDF values, features, and tags.

e Estimate TF-IDF for ten words from the previous exercise.

e Load the following EchoNest features as in Exercise

featureNames = {’"hotttnesss"’,’"loudness"’,’"tempo"’,’"danceability"’,
) IIkeyIl ) J Ilmodell ) on energyll ) } .

e Load the most frequent 10 tags:

tagNames = {’"rock"’,’"alternative"’,’"favorites"’,’"pop"’,’"alternative rock"’,
>"indie"’,’"Love"’,’"Awesome"’,’"male vocalists"’,’"90s"’};

Output three most correlated tag and feature, three most correlated tag and TF-IDF value, three
most correlated feature and TF-IDF value.
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Chapter 9

Statistical Methods

(Claus Weihs)

Basic Exercises

Exercise 9.1 [Genre - Blues]

For the Jazz Blues version given in Example 9.3, give the probabilities of chords related to the tonic I,
the subdominant IV, and the dominant V, basic for blues schemes. As a unit use half a bar. Compare
the distributions of the chords related to I, II, III, IV, V, and VI with the corresponding distribution of
the Standard blues scheme by means of a bar chart as in Figure 9.1. What is the modal value of the two
distributions of chords? If we think of the chords as ordered by their number, what are the 50%-quantiles
qo.5 of the two distributions? Also give the probability for a 7th chord. Interpret the results.

Exercise 9.2 [Genre - Blues]

Are the distributions in Exercise [9.1] uniform distributions? Please explain! Give a variation of the
standard blues scheme, where the involved chords are uniformly distributed.

Exercise 9.3 [Pitch - Periodogram]

Show, how the fundamental frequencies in Exercise can be identified analogue to Exercise by
means of the periodogram instead of the original time series. Calculate the periodogram corresponding
to the original time series of the two individual frequencies and of their superposition.

Hint: periodogram() in library tuneR calculates the periodogram of a time series.

Exercise 9.4 [Timbre - MFCC]

Show that a pure sine can be easily distinguished from a sine with overtones by means of the first two
MFCCs. Use, e.g., f = 110 Hz as the frequency of the pure sine, and the 3"¢ and 5" (odd) partials as
overtones. Try MFCC 1 only as well as MFCC 1 vs. MFCC 2. Use a sampling rate of 44100 Hz.

Advanced Exercises

Exercise 9.5 [Timbre - Instrument]

Discuss whether guitar tones and piano tones can be completely distinguished by means of the first
MFCCs. Use the database svm.RData (see Appendix[A.1)) with MFCCs from 4309 guitar tones and 1345
piano tones (see book, Example 9.9). Use MFCCs from block 1 and block 5 of the tones, i.e. from the
beginnings and the ends. Beginnings and ends of tones are best suited for instrument recognition because
of different onset and offset sounds.

Plot MFCCI in block 1 (start of tone) and block 5 (end of tone) for the guitar tones 1 - 50 and the
piano tones 1-50 (with the row-indices 271-320 in the data matrix). Compare both, the blocks and the
instruments. Also compare the variation of MFCC for the different tones. Can guitar and piano be
distinguished by means of this information? What could be a measure for distinction?
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Exercise 9.6 [Timbre - Instrument]

As in Exercise discuss whether guitar tones and piano tones can be completely distinguished by
means of the first MFCCs. Use, again, the database svm.RData with MFCCs from 4309 guitar tones
and 1345 piano tones (see book, Example 9.9) and the MFCCs from block 1 of the tones, i.e. from
the beginnings. Beginnings of tones are best suited for instrument recognition because of different onset
sounds. This time, plot MFCC 1 vs. MFCC 2. Does this help for the distinction of guitar and piano?

Exercise 9.7 [Timbre - Instrument]

Reconsider Exercise [9.5| and test whether MFCC 1 in block 1 and block 5 have the same expected value
for guitar as well as piano. Use the same data as in Exercise Discuss the results, in particular the
p-values.

Exercise 9.8 [Timbre - Instrument]

Reconsider Exercise [9.5] and carry out a regression analysis of MFCC 1 in block 5 on block 1 for the
selected observations of guitar and piano. Compare the results with the results of the above Exercise.
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Chapter 10

Optimization
(Giinter Rudolph)

Basic Exercises

Exercise 10.1 [Multi-objective Feature Selection]

Suppose we want to find a feature set for some fictitious classifier endowed with maximum accuracy
and the least number of features. Application of some multi-objective algorithm led to a solution set
graphically represented in Figure Which of the solutions with labels A, B, ..., Q are not dominated?

number
x A
of
x B
features
Xc
XD E
X
X F
XG
H
Xyl
J
X x K X
XM
N% Xp X
Xxq ©

accuracy

Figure 10.1: Fictitious solution set in objective space.

Advanced Exercises

Exercise 10.2 [Single-objective Feature Selection]

Suppose we want to find a set of features that maximizes the precision of some classifier. The features
are labeled with indices from 1 to n. If a feature with index ¢ is use for classification we set variable
x; = 1, otherwise x; = 0. To save time and effort we assume that the objective function

15— [s(x) — 15]

f(z) 20 sin (g . s(:r)) ‘ with  s(z) = io:xz
i=1

provides the precision f(x) € [0,1] for any = € {0, 1}?°. In reality, we do not know the objective function
explicitly and its evaluation requires the time-consuming training of a classifier and its evaluation.
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Apply the NEXT and BEST IMPROVEMENT heuristics with starting point (1,0,1,0,1,0,...,1,0}.
Which are the best solutions found by these heuristics? Can we do better?
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Chapter 11

Unsupervised Learning
(Claus Weihs)

Basic Exercises

Exercise 11.1 [Pitch - Distance, Blues]

Calculate distances of the chords in the Standard Blues scheme I, I, I, I, IV, IV, I, I, V, V, I, T and in the
Jazz Blues version 17, IV7 IVdim, 17, V7 17, IV7, IVdim, 17, 1117 VI7, IIm7, V7, 1117 VI7, 117 V7 given
in Example 9.3 (cf. Exercise . Define chord distance as the distance on the 1D line of fifths c, g, d,
a, e, h, f sharp, c sharp, a flat, e flat, b flat, f (cf. Section 3.2.2). Note that this distance is only based on
the roots of the chords, ignoring important properties like major or minor and sevenths. Use full bars as
the unit for the Standard blues scheme and half bars as the unit for the Jazz blues scheme. Assume I = C.

Exercise 11.2 [Pitch - Distance, Blues]

Calculate distances between the Standard Blues scheme I, I, I, I, IV, IV, I, I, V, V, I, I and the Jazz Blues
version 17, IV7 IVdim, 17, Vm7 17, IV7, IVdim, 17, 1117 VI7, IIm7, V7, 1117 VI7, II7 V7 given in Exam-
ple 9.3 (cf. Exercise . Use generalized versions of the Hamming distance and the simple matching
index, where the entries in the observations are allowed to be generally nominal, i.e. can assume more
than two values. Use half bars as the unit and base distance only on chord roots. Assume I = C.

Exercise 11.3 [Pitch - Chord Distance]

The distance measures in Exercise and Exercise are too simple in two respects, Exercise [I1.]]
because only chord roots are used, Exercise because musical properties are fully ignored. In this
Exercise we will cure these drawbacks by introducing a much more realistic (but also more complicated)
Chord distance rule proposed by [3].

First define the distance d(z,y) = j + k between two chords x and y, where 5 = minimal number
of applications of the Circle-of-fifths rule needed to shift the root level of x into y, and & = sum of the
number of non-common pitch classes in the levels within the basic spaces of x and y divided by 2. A pitch
class is non-common if it is present in x or y but not in both chords. The basic space of a chord is the
scale of tones {0,2,4,5,7,9,11} in Major keys and {0, 2, 3,5,7,8,10} in minor keys, where 0 corresponds
to the root of the key. One application of the Circle-of-fifths rule corresponds to a shift of the root level
of the chord x 4 steps to the right or to the left on the basic scale of x (modulo 7). Note that 0 < 5 < 3.
If a root level of y is not on the basic scale of z, then set j = 3.

As an example calculate the distance between r = F = {F, A,C} and y = G" = {G, B, D, F'}.

Exercise 11.4 [Duration - Clustering]

Let us now cluster the following 1D-data X of lengths of music pieces (in min) by means of the hierarchical
single linkage method: X = {0.9,1,1.15,1.8,2.0,2.4,2.7,3.05,3.6}. Apply the single linkage method to
the prior 9 individual clusters. Report all steps of the method. How many clusters would you prefer?
Where do you want to split the clusters?
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Advanced Exercises

Exercise 11.5 [Pitch - Chord Distance]

Let us consider the basic chord progressions of five songs in F'Major from The Real Vocal Book (Volume
11, High Voice), namely

I. Ac-cent-tschu-ate the positive,
IT. Aren’t you glad your’re you,
ITI. As long as I live,
IV. At sundown, and

V. Be careful, it’s my heart.

The corresponding basic 8-bar chord progressions are given in Table

Table 11.1: Chord Progressions of the songs I - V; 1 beat = 1 quarter, FI7 = Fmai7
beat | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 |29 31
I. F FT F°® F G7 Cc7 F FT | F® F G” C7 | F"
I1. F F/A | B*® B | C c"|F* D7 |G C"|F5 DT|G" C"|FS
L. | r7° A" D" G" c" F* F¢
Iv. | G 7 cr F¢ B | AT DT |G ol F* F*
V. F07 Fj7 FO? Fj? E?/F Fj7 G7b9 C7 F6

For these progressions, identify the involved chords, the corresponding basic scales, and the corre-
sponding distances to the triadic tonic chord z of the key of all songs F = {F, A,C}.

Exercise 11.6 [Pitch - Distance, Chord Progressions]

On the basis of the Chord distance rule, [3] defines a distance function for chord sequences, called the
Tonal Pitch Step Distance (TPSD). The central idea behind the TPSD is to compare the change of
chordal distance to the tonic over time. This is done by calculating the chordal distance d(x,y) between
each chord y of the song and the triadic tonic chord z of the key of the song. Plotting the chordal distance
against the time, results in a step function. The difference between two chord sequences can then be
defined as the minimal area between the two step functions f and g over all possible horizontal shifts ¢
of f over g (cp. Tables ??, ??). These shifts are cyclic, and to prevent longer sequences from yielding
higher scores, the score is normalized by dividing it by the length of the shortest step function. Trivially,
the TSPD can handle step functions of different length since the area between non-overlapping parts is
always zero.

For the progressions in Exercise determine the pairwise TPSD distances. Note that the progres-
sions are 32 beats long, and that the triadic tonic chord x of the key of all songs is F = {F, A, C'}. First,
identify the step functions corresponding to the chord progressions I - V on the basis of the solutions of
Exercise [11.5] and then calculate the corresponding TPSD distances for each pair of chord progressions.

Exercise 11.7 [Pitch - Chord clustering]

Apply hierarchical clustering (”complete” linkage) to the chord distances calculated in Exercise [11.5] (see
Table ??). This clusters the chords according to their distance to the triadic tonic chord = of the key
of all songs F' = {F, A,C}. How many clusters appear to be most sensible? Can you interpret the results?

Hint: Use package ”dendextend” in R: Before plotting, specify the labels of the chords, e.g., as
follows:

dend <- as.dendrogram(X.clust)
labels(dend) <- expression(F~"+",F"6,F/A,F~"j7",F~"07",G"7,G""7b9",G""-7",A"7,A""-7",B""b6",
B~"p7",B~"07",C,C"7,D°7,D""-7",E"7/F) [order.dendrogram(dend)]
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Exercise 11.8 [Timbre - Clustering vs. True Classes]

Consider the same situation as in Exercise However, we only study the tones 4530 - 4640 with 55
guitar and 56 piano tones, and the features MFCC 1 in the 1st block ("mfcc_block1_1") and in the 2nd
block ("mfcc_block2-1") of the tones. Discuss whether Ward clustering is able to distinguish guitar
and piano tones based on these two blocks. Compare with the results in Example 11.2 in the book.
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Chapter 12

Supervised Classification
(Claus Weihs and Tobias Glasmachers)

For classification in R, we recommend the package mlR. A tutorial for this package can be found on
https://mlr-org.github.io/mlr-tutorial/release/html/index.html.

Basic Exercises

Exercise 12.1 [Linear Classification]
Which of the following learning machines yields a linear classifier: LDA, 1-nearest-neighbor, decision tree,

random forest, SVM with linear kernel, SVM with Gaussian kernel?

Exercise 12.2 [Genre - Nonlinear Classification]

What does it mean to apply the “kernel trick” to a linear method? What is the benefit, say, if a genre
classification problem requires a non-linear decision boundary?

Exercise 12.3 [Pitch - Nearest Neighbors]

We want to train a regression model for predicting the pitch of a tone using a tone data base covering
multiple instruments. For each tone we have MFCC, spectral envelope and chroma features, where the
variability of the chroma feature values is ten times larger than for the other features. Do you expect a
1-nearest-neighbor predictor (based on Euclidean distance in feature space) to perform well on this task?
If so: why, if no, why not? Try to come up with a better distance function.

Exercise 12.4 [Timbre - Instruments]

Train a decision tree to tell guitar from piano tones. The data file svm.RData (see Apendix[A.1)) contains
features of tones, the instruments are encoded as labels 0 (guitar) and 1 (piano).

Hint: The R package rpart provides a decision tree and functions to plot the tree.

Exercise 12.5 [Timbre - Random Forest, Instruments]

Consider the data set svm.RData consisting of MFCC, spectral envelope and chroma features of guitar
and piano tones. Train a random forest to disambiguate the instruments. The random forest method
is commonly applied for estimating the relevance of features by checking which features are used most
prominently by the trees. This can be done for example with help of the Gini impurity index.

Hints:
e The R package randomForest provides a random forest predictor.
e The importance of the variables can be plotted with the function varlmpPlot() from the R package

randomForest.
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Advanced Exercises

Exercise 12.6 [Genre - Nonlinear SVM|

Train an SVM for telling classic from other music, analog to the example throughout the chapter. Load
the data set dataTrain.csv consisting of MFCC features of 4-second windows of music into R. Apply a
Gaussian kernel SVM classifier. Tune the SVM parameter C' and the kernel parameter v with grid search
in the range C' € {2°,2%,...,210} and v € {272,271 ... 23} using cross-validation. Report the best
parameters and the cross-validation performance.

Hints:
e The R package €1071 includes the SVM classifier.

e The R package mlr provides the functions makeParamSet() to set the parameters, makeResam-
pleDesc() for cross validation and tuneParams for grid search.

Exercise 12.7 [Genre - Model Selection]
Load the genre (classic vs. non-classic) classification data sets dataTrain.csv and dataTest.csv. Train
k-nearest-neighbor classifiers for k = 1, k = 10, and & = 100 and compute the error rate on training and

test set. For which values of k& do you observe underfitting or overfitting?

Hint: The R package class provides a knn classifier.

Exercise 12.8 [Timbre - Feature Selection]
Train an LDA model on the task of Exercise in four conditions: (i) with all features, (ii) only with
the MFCC features, (iii) only the with spectral envelope features, and (iv) only the with the chroma

features. Estimate the error rates using cross-validation. Interpret the result.

Hints: The R package m1R provides an LDA classifier as well as the function makeResampleDesc()
for cross validation.

31



Chapter 13

Evaluation
(Igor Vatolkin and Claus Weihs)

Basic Exercises

Exercise 13.1 [Evaluation Measures]

Which groups of evaluation measures exist? Discuss the differences and provide examples.

Exercise 13.2 [Multi-Objective Evaluation]

Which three steps belong to design of evaluation? Which combinations of measures can be used for
multi-objective evaluation?

Exercise 13.3 [Genre - Evaluation of Decision Trees]

Let us implement a simple evaluation scenario for two decision trees in MATLAB. For the binary classifi-
cation task Pop/Rock, load the training set with c1 = arff_loader (’PopRock-TS120-FP1.arff’); and
the test set with ¢2 = arff_loader (’PopRock-TAS120-FP1.arff’);. Note that the last two attributes
correspond to track id and category and do not belong to features. Before the classification, create a
vector for labels and map category AG_Pop to 1 and NOT_AG_Pop to 0. Create the first decision tree
using the first half of the training set, and the second one using the complete training set with the help
of fitctree. Implement the following functions with regard to Definition 13.8 and Equations 13.7, 13.8,
13.14:

function [tp,tn,fp,fn] = confMatrix(truelLabel,predictedLabel)
function rec = recall(truelabel,predictedLabel)

function prec = precision(trueLabel,predictedLabel)

function bre = balancedError(truelLabel,predictedLabel)

Output the evaluation measures and visualize the trees.

Exercise 13.4 [Timbre - Instruments]

Consider the same situation as in Exercise However, we only study 10 guitar and 11 piano tones,
and only the one feature MFCC 1 in the first block ("mfec_blockl_1”) with the following elements (1st
value changed, 1st 10 elements guitar!):

X=(241261591.811.321.36 1.21 0.85 1.65 0.81 4.31 3.37 2.54 3.05 5.07 3.20 2.85 2.74 4.88 2.75 2.54).
Simulating 5 repetitions of 50%-subsampling leads to the following random drawings of 11 elements of
X in the training sample and 10 elements in the test sample. The corresponding classes (classl — classb)
are shown underneath the sample values (permul — permu5).

training samples

permul 3.37 5.07 2.74 2.40 3.05 0.85 1.26 2.54 1.21 4.31 2.85
classl 1 1 1 0 1 0 0 1 0 1 1
permu2 1.21 4.88 1.65 2.54 0.85 1.32 1.26 3.20 4.31 2.75 2.54
class2 0 1 0 1 0 0 0 1 1 1 1
permu3d 3.20 2.85 1.81 2.54 3.05 1.26 1.32 1.59 1.36 3.37 0.85
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class3 1 1 0 1 1 0 0 0 0 1 0
permu4 3.37 1.36 3.20 2.54 4.88 1.32 1.21 1.59 2.75 2.40 5.07
class4 1 0 1 1 1 0 0 0 1 0 1
permub 0.85 3.37 2.74 1.21 2.54 1.81 2.85 2.75 1.59 1.26 4.88
classb 0 1 1 0 1 0 1 1 0 0 1
test samples

permul 1.59 4.88 1.32 1.36 0.81 1.65 1.81 2.75 2.54 3.20
classl O 1 0 0 0 0 0 1 1 1

permu2 2.40 3.37 3.05 5.07 1.59 1.81 1.36 2.85 0.81 2.74
class2 0 1 1 1 0 0 0 1 0 1

permu3 4.88 2.54 2.74 2.40 0.81 1.65 4.31 5.07 2.75 1.21
class3 1 1 1 0 0 0 1 1 1 0

permu4 1.81 3.05 1.65 2.85 0.85 2.74 1.26 2.54 0.81 4.31
class4 0 1 0 1 0 1 0 1 0 1

permub 4.31 1.65 1.32 1.36 3.20 2.54 5.07 2.40 3.05 0.81
classb 1 0 0 0 1 1 1 0 1 0

In order to classify, calculate the means of the elements of the training sample of the two classes, and use
the mean of the means as the decision border. Afterwards, predict the unchosen elements. Report the
errors. Which elements are misclassified and why?

Note that software is not necessary for solving the exercise since all information is given in the text
so that you could do the calculations by hand! If you to do not want to do all calculations, concentrate
on permutations 2 and 4.

Advanced Exercises

Exercise 13.5 [Genre - Multi-Objective Evaluation of Decision Trees]

In this exercise we will examine the performance of decision trees trained with different training set sizes.
Based on the classification scenario from Exercise write the MATLAB code which trains trees for all
possible training sets between 15 and 120 tracks. Estimate recall, precision, and balanced relative error,
and plot them together with the corresponding regression line using fit(x,y, ’polyl’). Which impact
on evaluation measures can you observe for increasing training set sizes?

Estimate hypervolumes for all three pairs of evaluation measures and increasing training set sizes with
the help of getHypervolume([firstMeasure, secondMeasure], isMinFirst, isMinSecond). Set
isMinFirst and isMinSecond to 1 when the measure is to be minimized and to 0 when the measure is to
be maximized. Which training set sizes have the largest hypervolumes with regard to the combinations
of evaluation measures?

Exercise 13.6 [Genre - Nested Resampling]

Implement nested resampling in MATLAB using both data sets from Exercise [I3.5] and a decision tree
classifier:

fitctree(trainingInstances,traininglabels, ’MaxNumSplits’,splitNumber) ;

For clarity we distinguish between following sets: in the outer cross-validation loop 9/10 of all instances
(music tracks) are used as tuning set and the remaining 1/10 as test set. In the inner loop, the tuning set
is divided into training set (9/10 of the tuning set) and validation set to find the best parameter setting
for classification tree (1/10 of the tuning set). For the hyperparameter tuning in the inner loop, vary
the number of maximum splits from 1 to 10 and run 10-fold cross-validation to find the best number of
maximum splits estimating mean balanced relative error. For the estimation of test errors during outer
cross-validation, use the best maximal split size each time and estimate finally the mean test error. Before
the first start of the outer and each inner loop, shuffle the order of instances using randperm.

Exercise 13.7 [Timbre - Instruments]
Consider the same situation as in Exercise However, we only study the tones 4530 - 4640, including

55 guitar and 56 piano tones, and the features MFCC 1 in the first block ("mfcc_blockl 1”) and in
the second block (?mfec_block2_17) of the tones (cp. Exercise|11.8)). Apply leave-one-out cross-validation
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to evaluate Linear Discriminant Analysis. The posterior probabilities of the observations for, e.g., class 0
can be estimated by ”number of class 0 predictions during cross-validation” / ”number of observations”.
If this estimated posterior probability is < 0.5, then this observation is classifies as ”class 1”7. This leads
to an error if the true class would be 0. Illustrate the misclassified observations.

Hint: Apply option ”CV” in function ”1da”.

Exercise 13.8 [Pitch - Testing]

For the data in Exercise apply the McNemar test to compare the results of Linear Discriminant
Analysis (Ida) and Classification Trees (rpart). Are there significant differences on the significance level
5%7?
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Chapter 14

Feature Processing
(Igor Vatolkin)

Basic Exercises

Exercise 14.1 [Categorization of Feature Processing Methods]

Describe several criteria how we can group feature processing methods with regard to their impact on
feature matrix dimensions. Name example methods.

Exercise 14.2 [Missing Values]
List several reasons why some time windows may correspond to missing or “not a number” feature values
before processing. Discuss the difference between audio features and other feature sources. Name concrete

examples if possible. How the problem of missing values can be handled? Is it possible that some values
will be missing after feature processing?

Exercise 14.3 [Automatic Feature Construction]
Which is the motivation to apply automatic feature construction? How new features can be constructed

from others? Provide a categorization of methods with examples. Which is the main challenge of the
method?

Exercise 14.4 [Evaluation of Feature Processing]

How can the feature processing methods be evaluated? Discuss general and specific evaluation measures.

Advanced Exercises

Exercise 14.5 [Timbre - Normalization]

The file 2_14.arff contains the spectral centroid extracted for the track 2.mp3 from “1000 Songs” database
using 22,050 Hz as a sampling frequency and extraction frames of 512 samples without overlap.

1. Write the MATLAB code to normalize the values into an interval [0,1] according to min-max
normalization method and plot the normalized values. Take into account that for some frames with
too weak signal no centroid values could be extracted (“NaN”-values) and replace them with the
median of the series. To load the centroid series, use a command

c = arff_loader(’2_14.arff’);

2. Write the MATLAB code to normalize the series with softmax normalization and plot the normal-
ized values.
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Exercise 14.6 [Timbre - Feature Processing]

Using the centroid series after the replacement of missing values from Exercise [14.5] estimate the maxi-
mum possible number of classification windows of 5 s with 2.5 s overlap. Write the MATLAB code for the
estimation of quartile statistics for classification windows of 5 s with 2.5 s overlap. To calculate original
extraction windows of 512 samples which are contained in corresponding classification windows, estimate
the boundaries in seconds. List the quartile statistics for the 10th classification window.

Exercise 14.7 [Timbre - Structural Complexity]

The file 2_39.arff contains 13 MFCCs extracted for the track 2.mp3 from “1000 Songs” database using
22,050 Hz as a sampling frequency and extraction frames of 512 samples without overlap. Write a
MATLAB function which estimates structural complexity, so that 5 s before and 5 s after the analysis
frame are taken into account. Plot the result.

Some hints:

o After the ARFF table is loaded, convert it to the matrix using cell2mat function. Remove the last
column which corresponds to a window number.

e After the estimation of MFCC matrix, normalize the values to [0,1] using min-max normalization
method as in Exercise [[4.5] Why the normalization is necessary for the estimation of structural
complexity?

e Define a separate function with two input vectors for the calculation of Kullback-Leibler divergence

Exercise 14.8 [Timbre - Instruments]

Let us study the 1st MFCC for a set of 62 cello and 30 flute tones as in Section 14.5. We distinguish
between frames from the attack interval and the release interval, and only the middle” of these intervals
is taken into account. This leads to an acceptable separation of the distributions of MFCC 1 for the two
instruments (see Figures 14.5 (d,e,f)). Let us try to reconstruct this in a simplified way for the attack
interval.

Use the data from /Data/Feature_Processing/MFCCs, where you can find the MFCC features for
several tones. The first column corresponds to the 1st MFCC. Let us assume, the attack part consists of
the first 10 windows. First, consider the mean values over all windows (for each tone) and compute the
densities for cello and flute, respectively. Second, consider the first 10 windows of each tone only. Which
approach is better for separation?

Hint: For reading ARFF files in R, we recommend the package foreign with the function read.arff ().
For reading the file names within a directory, you can use the standard R function dir().
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Chapter 15

Feature Selection
(Igor Vatolkin)

Basic Exercises

Exercise 15.1 [lrrelevance and Redundancy]

Explain the difference between irrelevant and redundant features. Why does it make sense to remove
both irrelevant and redundant features from classification models?

Exercise 15.2 [Feature Selection]

Name four design steps for a feature selection method and discuss their properties. Provide examples.

Exercise 15.3 [Relevance Criteria]

Name the categories of relevance criteria. Discuss their properties and provide examples for related
measures.

Exercise 15.4 [Multi-Objective Feature Selection]

Which combinations of evaluation criteria can be used for the multi-objective feature selection? Which
criteria are not suited for simultaneous optimization? Is it possible to estimate automatically how well
two or more criteria are suited for simultaneous optimization?

Advanced Exercises

Exercise 15.5 [Genre - Correlation-Based Relevance]

The file PopRock-TrainingSet] Tracks.arff contains 15 processed features for 4 music tracks from the
training set of Example 13.2. Write the MATLAB code for the estimation of average correlation between
features using corrcoef function. Sort the features based on their average correlation to remaining
features. Answer the following questions:

e Which two features have the strongest positive correlation?
e Which two features have the strongest negative correlation?
e Which two features have the weakest correlation?

e Which feature has the weakest average absolute correlation to other features (being the best can-
didate to add to an empty feature set during forward selection)?

e Which feature has the strongest average absolute correlation to other features (being the best
candidate to remove from the complete feature set for during backward selection)?

Some hints:
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e After the ARFF table is loaded with arff_loader, remove the last two columns of the cell array
which correspond to a track ID and a category, and convert it to the matrix using cell2mat.

e Following MATLAB functions are useful: sort for sorting of matrices and arrays (for a matrix M,
it can be sorted with [value,index] = sort(M,:)); ind2sub for the identification of features to
identify after the sorting.

Exercise 15.6 [Genre - MRMR]

For the data set from Exercise write the MATLAB code for minimal-redundancy-maximal-relevance
(MRMR) feature selection. As the redundancy criterion Wy, use the absolute average correlation with
already selected features, and as the relevance criterion Vi, use the absolute correlation with the label.
Add features during a forward search one by one in a loop according to the maximization of Wy — Vg
and display the sequence of features which were added.

Some hints:

e In the original data set, the label is described as a string: positive Pop examples as ’AG_Pop_20’
and negative as 'NOT_-AG_Pop_20°. To measure the correlation between a feature and a label,
replace these strings with values 1 for Pop examples and 0 for others. strcmp can be used for the
parsing of string labels.

e To estimate the absolute values of the covariance, apply abs to the feature matrix after corrcoef.

Exercise 15.7 [Genre - MRMR, Decision Tree]

Modify the MATLAB code from Exercise for the evaluation of MRMR-selected feature sets using
classification with decision tree classifier and estimate the cardinality of the optimal feature set. Load
the data set of 15 features and 120 tracks from ’PopRock-TAS120.arff” and use the first half for training
and the second half for testing. As an evaluation measure, implement the relative classification error,
cf. Equation (13.12). Plot the tree of the set with the smallest error.

Some hints:

e For the training of the tree, use fitctree(trainingSet,labels).
e For the classification with the trained tree, use predict(tree,testSet).

e For the visualization of the tree, use view(tree, ’Mode’,’Graph’).

Exercise 15.8 [Genre - Multi-Objective Evaluation of MRMR]

e Update the MATLAB code from Exercise for the evaluation of MRMR-selected feature sets
with regard to two pairs of criteria: (1) feature rate and relative error; (2) recall and specificity. To
implement the measures, see Equation (??) and Section 13.3.3. Output the measures for all trees.

e With the help of the function nonDominated(values,isMinFirst,isMinSecond), estimate the
non-dominated fronts of incomparable solutions in both evaluation cases (cf. also Section 10.4).

e Plot the area which is dominated by the non-dominated fronts. Estimate the tree with the largest
hypervolume in both evaluation cases. Is the same tree “optimal” for both evaluation cases? To
measure the hypervolume, use the function getHypervolume (values,isMinFirst,isMinSecond).
Which features are contained in the tree(s) with the largest hypervolume?
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Chapter 16

Segmentation
(Nadja Bauer, Sebastian Krey, Uwe Ligges, Claus Weihs, and

Igor Vatolkin)

Basic Exercises

Exercise 16.1 [Duration - F-Measure]

Let (0,0.5,1,1.5)7 s be a vector of true onset times. Consider the following three vectors of estimated
onset times:

a) (1.49)T s,
b) (0.04,0.45,1.04,1.49)T s,
c) (0.25,0.75,1.25,1.49)7 s.

Calculate the F-values for all three vectors by using an £25 ms and £50 ms tolerance interval,
respectively. Interpret the values. Which shortcomings of the F-value can you identify?

Exercise 16.2 [Duration - Moving Threshold]

Discuss the effect of the moving thresholding function ThreshFunction (mean or median) in formula
(16.5) on the estimated onset times. Particularly discuss the effect of the size rp — Ir of the thresholding
window for the two moving thresholding functions.

Exercise 16.3 [Duration - Spectral Flux]

In Chapter 5 the following definition of the spectral flux feature (see Formula (5.12)) is given:

M/2
taux [N = D (XA 1l = [X[A =1, )7

pn=0
However, in the most onset detection publications the filter based version is used (also without squaring):

M/2

tawat [N = D H(IXI\ ]l = XA =1, 4]])

with H(z) = (x + |x|)/2. Discuss the effect of the H(x) filter on onset detection.

Exercise 16.4 [Timbre - Phases of Instrument Sound]

What are the typical phases of an instrumental sound?

Exercise 16.5 [Timbre - Distance Measure]

Which distance measure is usually used for the visualization of features like MFCCs and how is it defined?
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Exercise 16.6 [Order Constraints]

What is the advantage of order constrained solutions in k-means clustering in comparison to traditional
clustering approaches (k-means, hierarchical clustering) for the application in music signal analysis?

Advanced Exercises

Exercise 16.7 [Duration - Onset Detection]

In the files Piano.wav and Flute.wav monophonic piano and flute recordings are given, illustrated in
the book in Figure 16.3. The sampling rate of the two recordings is 44100 Hz.

1. Read both wave files and plot their amplitude. Pay attention to a correct labeling of the x-axis
(either samples or time). In R you can use, e.g., the commands readWave and plot of the tuneR
package.

2. Compute the short time Fourier transform (STFT). Use M = 2048 samples as the window length.
The windows should not be overlapping. What are the smallest and the highest frequencies for
which the Fourier coefficients are calculated? In R you can use, e.g., the command specgram of the
signal package.

3. For the two audio recordings, calculate and illustrate two onset detection features: spectral flux
(tauxu[A] as defined in Exercise 16.3) and the difference of the absolute amplitude maxima in the
neighboring windows:

tampiMax[A] = absAmplitMaz[\] — absAmplitMaz[A — 1].

4. In the files trueFrames_piano.txt and trueFrames_flute.txt the frame numbers of the true
onset times are gives (for the window length of 2048 samples). Illustrate these frames in your plots,
e.g., by adding vertical lines which mark the onset frames. Discuss the plots with respect to the
performance of the two features on the given recordings.

Exercise 16.8 [Duration - Onset Detection]

The aim of this Exercise is to demonstrate the effort required for hand labeling of tone onsets. Files
guitar.wav and violin.wav contain 3 seconds of solo guitar and violin pieces, respectively.

Try to find the true onset times and mark them as vertical lines in the associated amplitude plots.
In the R language the following commands of tuneR package might be helpful: readWave, extractWave,
play and plot. It is also advisable to use onset detection features (mentioned, e.g., in Exercise 16.4) for
faster finding of the most promising signal frames.

Exercise 16.9 [Order Constraints Clustering]

What are the necessary steps to cluster a musical piece into segments like in example 16.7 of the book?

Exercise 16.10 [Clustering a Short Piece with R]

Use R to produce the following data:

library("tuneR")

fjnotes <- c(rep(c(-9, -7, -5, -9), 2), rep(c(-5, -4, -2), 2))+5

fjnotes2 <- c(rep(c(-9, -10, -9, -14), 2), rep(c(-9, -7, -5), 2))-7

fjlengths <- c(rep(l, 8), rep(c(l, 1, 2), 2)) / 2

fjtones <- mapply(sine, 440%*2~(fjnotes/12), duration = fjlengths, xunit="time")
fjtones2 <- mapply(sine, 440%*2~ (fjnotes2/12), duration = fjlengths, xunit="time")
fj <- do.call(bind, lapply(fjtones, prepComb))

fj2 <- do.call(bind, lapply(fjtones2, prepComb))

size <- min(length(fj), length(£j2))

fijm <- 0.7xfj[1:size] + 0.3%xfj2[1:size]

The Wave object fjm contains a mono signal of two parts (voices) of “Frere Jaques”.
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. Write code to find k clusters of this signal using a simple k-means approach

. and decide for an appropriate value of k (try each the clustering several times to see whether it is
stable).

. Do you get a temporal order 1,...,n into k clusters? Does it make more sense to use an algorithm
that preserves the temporal order or is the simple k-means approach sufficient?
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Chapter 17

Transcription
(Uwe Ligges and Claus Weihs)

Basic Exercises

Exercise 17.1 [Pitch - Estimation]

Show, how the fundamental frequencies in Exercise[2.1]can be identified analogue to Exercise[4.8/ by means
of the method in Equation (17.1) and the Quinn method (Equation (17.2)) instead of the original time
series. Is there a difference?

Hints:

e FF() in library tuneR realizes Equation (17.1).

e Additionally, we have prepared the R functions quinn, which realizes Equation (17.2).

Exercise 17.2 [Pitch - Notation]

Given the concert a’ (440 Hz), what is the music notation for the fundamental frequencies 110 Hz and
138.65 Hz?

Exercise 17.3 [Duration - Note value]

Given the onsets 250 ms and 750 ms for the two notes A and c#/db of the same length, and the tempo
60 beats per minute, i.e., 60 quarters a minute, and no pause between the notes, what note value do the
two notes have?

Exercise 17.4 [Duration - Notation]

Given length of notes, e.g., two quarters, draw the two notes A and c#/db into a graphical scheme such
as the one produced by function quantplot () in the R package tuneR.

Advanced Exercises

Exercise 17.5 [Separation - ICA]

Run the following R code:

library("tuneR")

fjnotes <- c(rep(c(-9, -7, -5, -9), 2), rep(c(-5, -4, -2), 2))+5

fjnotes2 <- c(rep(c(-9, -10, -9, -14), 2), rep(c(-9, -7, -5), 2))-7

fjlengths <- c(rep(l, 8), rep(c(l, 1, 2), 2)) / 2

fjtones <- mapply(sine, 440%*2~(fjnotes/12), duration = fjlengths, xunit="time")
fjtones2 <- mapply(sine, 440%2~ (fjnotes2/12), duration = fjlengths, xunit="time")
fj <- do.call(bind, lapply(fjtones, prepComb))

£j2 <- do.call(bind, lapply(fjtones2, prepComb))

size <- min(length(fj), length(£j2))

fjs <- stereo(0.7xfj[1:size] + 0.3*fj2[1:size], 0.3*fj[l:size] + 0.7xfj2[1:size])
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Now you have generated a stereo Wave object in R package tuneR that contains the first 8 bars of a
very artificial version of the song “Frere Jaques”.

Listen to the sound of the fjs object and apply an ICA in order to separate the two parts (voices)
from each other. Convert the result into some sound again and listen t it in order to verify if you have
been successful.

Exercise 17.6 [Pitch - Estimation]

With the pre-processed outcome of the previous exercise, go on and try to estimate fundamental frequen-
cies (on windows) of the first part (voice) of “Frére Jaques”, convert them to notes and visualize the
melody you have found.

If you could not find a solution to the previous excercise, just use the £j object from the code above
to continue.

Exercise 17.7 [Duration - Quantization]

Now, find a quantization of the result and visualize it.

Exercise 17.8 [Pitch - Typesetting]

Finally, try to produce sheet music.
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Chapter 18

Instrument Recognition
(Claus Weihs, Klaus Friedrichs, and Kerstin Wintersohl)

Chapter 18 — Basic Exercises

Exercise 18.1 [Timbre - Characteristics]
Consider the data set inst_orig.tzt (see Appendix with standard original features (characteristics)
which is described in section 18.4. Discuss which feature is best to distinguish violin and clarinet. Use

scatterplots for visualization.

Hint: The R function pairs() produces a matrix of scatterplots.

Exercise 18.2 [Timbre - Characteristics]

Please repeat Exercise for the auditory features of channels 1, 14, 27, 40 (data set inst_AM.tzt, see
Appendix [A.7)). Which features and which channels are the best ones?

Exercise 18.3 [Timbre - Classification]
Discuss the performance of the useful features, which you have identified in Exercise to separate
clarinet and violine tones by means of a random forest based on the original observations. Compare the

result to the performance of a random forest with all standard features.

Hint: The R package randomForest provides a random forest predictor.

Exercise 18.4 [Timbre - Classification]

Please repeat Exercise with the auditory features of Exercise Which feature set performs
better?

Advanced Exercises

Exercise 18.5 [Timbre - Feature Selection]

In this exercise, we use only the features of one channel of the auditory model to separate the five instru-
ments. Use a linear SVM and discuss the performances of different channels.

Hint: The R package 1071 provides an SVM predictor.

Exercise 18.6 [Timbre - Hyperparameter Tuning]

Please combine the original and the auditory features into one data set. Use a linear SVM and a random
forest for classification. Tune the hyperparameters of the classification methods and compare the error
rates by 10-fold cross-validation to the individual results listed in section 18.4.
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Exercise 18.7 [Timbre - Feature Selection]

Please apply feature selection for the combined data set of Exercise and a polynomial SVM with the
kernel function (compare Chapter 12)

k(x,z') = (T2’ +1000)? and with C = 107>, (18.1)

Use group-based forward and backward selection (compare section 18.4.5.3) and compare the results to
the error rates without feature selection.

Exercise 18.8 [Timbre - Hierarchical Taxonomy]

Please test the hierarchical taxonomies for the combined data set of Exercise[18.6|and compare the results
to the flat taxonomy (compare section 18.4.5.3). Use the same SVM as in Exercise m
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Chapter 19

Chord Recognition

(Geoffroy Peeters and Johan Pauwels)

Basic Exercises

Exercise 19.1 [Pitch - Chord]

What are the notes composing a D augmented triad ? a D dominant 7 tetrad 7

Exercise 19.2 [Pitch / Timbre - Harmonic Frequencies]

What are the first 4 harmonic frequencies of the pitch d3 ? What are the closest pitches to these
frequencies ?

Exercise 19.3 [Pitch - Chromal]

For the signal of the previous exercise, if all harmonics have the same amplitude equal to 1 what is the
corresponding 12-dimensional chroma vector ?

Advanced Exercises

Exercise 19.4 [Pitch - Constant-Q-transform]

Develop a Matlab code to perform the constant-Q-transform of an audio signal (see part 19.3.2). We will
consider the frequencies between ¢3 and c¢7. We will use a value b = 1 (b is the number of frequency bins
per semitone), hence @ = 16.81. We will apply a Hamming analysis window. Apply this transform to
the audio signal “chordpno.wav”.

1. Create the constant-Q-transform cosine and sine basis.

2. Display the cosine and sine basis of the constant-Q-transform. The plot to obtain is indicated in

Figure [19.1]

3. Perform the projection of the audio signal on the cosine and sine basis.

4. Display the resulting constant-Q-transform of the audio signal. The plot to obtain is indicated in

Figure [19.2]

Exercise 19.5 [Pitch - Chord recognition]

Develop a Matlab code to estimate the chord labels of an audio-signal. We will only consider the 12
Major and 12 minor triads for our chord dictionary (see Table 19.1). The chord will be represented using
a knowledge-driven approach (see part 19.4.1). The estimation will be done on a frame-basis using a
one-minus-cosine distance (see part 19.5). Apply this estimation to the audio signal “chordpno.wav” and
comment the results.

1. Define the chord dictionary for the Major and minor triads
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Figure 19.1: Representation of the cosine (black) and sine (red) basis of our constant-Q-transform.
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Figure 19.2: Resulting constant-Q-transform on the audio signal “chordpno.wav”.

2. Compute the chord representation in the 12 semitone pitch classes space of the chroma.

3. Display in matrix form (numberOfChord, numberOfChroma) the obtained chord dictionary values.
The plot to obtain is indicated in Figure [19.3]
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Figure 19.3: Display in matrix form (numberOfChord, numberOfChroma) of the Major and minor chord
dictionary values.

4. Compute the chroma representation of the audio signal. This can be easily done starting from the
constant-Q-transform representation of the audio signal.

5. At each time frame estimate the chord template that best represents the chroma vector using a
one-minus-cosine-distance.

6. Display the estimated chords of the audio signal “chordpno.wav”. The plot to obtain is indicated

in Figure [19.4]
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Figure 19.4: Estimated chords over time on the audio signal “chordpno.wav”.
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Chapter 20

Tempo Estimation
(José R. Zapata)

Basic Exercises

Exercise 20.1 [Duration - Tempo]

What is Tempo in music?

Exercise 20.2 [Duration - Problems in Tempo Estimation]

List some reasons why it may be difficult to automatically estimate tempo in music?

Exercise 20.3 [Duration - Hierarchical Levels]

List the hierarchical levels of how rhythm metrical levels are divided starting with the fastest

Exercise 20.4 [Duration - Aim of Automatic Estimation]

Which is the aim of automatic rhythm estimation?

Exercise 20.5 [Duration - Feature List]

What is the purpose of the Feature list creation?

Exercise 20.6 [Duration - Tempo Induction]

What is the purpose of the tempo induction block in the tempo estimation process?

Exercise 20.7 [Duration - Applications]

List areas of research for which automatic rhythm estimation is relevant

Advanced Exercises

Implement the simple tempo estimation system proposed in the tempo chapter and download the tempo
dataset from http://www.music-ir.org/mirex/wiki/2006:Audio_Tempo_Extraction

Exercise 20.8 [Duration - Tempo Estimation 1]

Plot the BPM Sum of all band autocorrelations of the file = trainl.wav and locate the maximum values
of the most prominent tempo values and compare with the ground truth provided in the dataset.
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Exercise 20.9 [Duration - Tempo Estimation 2]

Plot the BPM Sum of all band autocorrelations of the file = train8.wav and locate the maximum values
of the most prominent tempo values and compare with the ground truth provided in the dataset.

Exercise 20.10 [Duration - Tempo Estimation 3]

Plot the BPM Sum of all band autocorrelations of the file = train9.wav and locate the maximum values
of the most prominent tempo values and compare with the ground truth provided in the dataset.

Exercise 20.11 [Duration - Tempo Estimation 4]

Plot the BPM Sum of all band autocorrelations of the file = train20.wav and and locate the maximum
values of the most prominent tempo values and compare with the ground truth provided in the dataset.
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Chapter 21

Emotions
(Giinther Rotter and Igor Vatolkin)

Basic Exercises

Exercise 21.1 [Affective States]

Please name six affective states.

Exercise 21.2 [Emotions]

What are the basic emotions?

Exercise 21.3 [Theory of Emotions]

Describe the theory of emotions from George Mandler related to music.

Exercise 21.4 [Emotions and Music]

Does music elicit real emotions?

Advanced Exercises

Exercise 21.5 [Timbre - Characterization of Emotions]

The 1st MFCC is the most relevant feature for the identification of anger and sadness, the 2nd MFCC
for fear (see Example 21.6). Visualize the distributions of MFCC 1 and MFCC 2 for anger, sadness, and
fear using the data from Examples 21.1. — 21.4 (MFCCs_anger.csv, MFCCs_sadness.csv, MFCCs_fear.csv
and MFCCs_joy.csv).

Exercise 21.6 [Categorical Emotion Recognition 1]

Reproduce the results of the Table 21.4 using MATLAB. First, load the features for 16 tracks with
[c,attr] = arff_loader(’categorical.arff’);

After the ARFF table is loaded, create the numerical feature matrix using cell2mat without the last
two attributes (id and category). Then, estimate individual relevance of features for the recognition of
four emotions anger, fear, joy, sadness with the help of Wilcoxon test (ranksum function). Output three
features which are at highest individually relevant for the recognition of the emotions.

Exercise 21.7 [Categorical Emotion Recognition 2]

Extend the solution of Exercise with feature processing which stores mean values of each feature for
complete tracks, and not for classification windows of 4 seconds. To identify all windows which belong to
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the same track, use the track id (second to last attribute in categorical.arff). Are the top three features
which distinguish well between the emotions the same? Are the results reliable?

Exercise 21.8 [Dimensional Emotion Recognition]

Reproduce the results of the Table 21.5 using MATLAB. First, load the features for 100 tracks with
[c,attr] = arff_loader(’dimensional.arff’);

After the ARFF table is loaded, create the numerical feature matrix using cell2mat without the
last attribute (id). Then, estimate R squared value for the regression between features and values
of arousal and valence. To associate corresponding arousal and valence values with audio features,
use two tables which map track id to mp3 name (id2mp3.arff) and mp3 name to arousal and valence
(static_annotations.csv). In the last table, mp3 name is listed in the first column, arousal and valence in
the second and the fourth column. For regression, use

[p,g]l = fit(featMatrix,arousal,’polyl’);

Output five features which explain at best arousal and five features which explain at best valence.
Visualize the regression as in Figure 21.6.
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Chapter 22

Similarity-Based Organization of

Music Collections
(Sebastian Stober)

Basic Exercises

Exercise 22.1 [Album Similarity]

Derive a model for album similarity based on the approach for tracks described in this chapter!

Exercise 22.2 [Distance and Similarity]

Discuss why the duality of similarity and distance may be questioned from a psychological point of view
as mentioned in Footnote 1!

Exercise 22.3 [Facet Weights]

Why is having negative facet weights problematic? (Cf. Equation 22.4)
Hint: This is, for instance, discussed by Cheng and Hiillermeier [2].

Exercise 22.4 [Distance Constraints]

How can the approach be changed to accommodate general relative distance constraints like “a and b are
more similar /less distant than u and v”? How would you need to change the equations?

Advanced Exercises

The MagnaTagATune dataset, which is currently hosted at http://mi.soi.city.ac.uk/blog/codeapps/
the-magnatagatune-dataset) contains a set of similarity annotations. This data was collected in a game
where in each round, participants had to listen to three 30-seconds music clips and decide which one is
the most dissimilar one. Parts of this dataset will be used in the following exercises.

Exercise 22.5 [Inferring Constraints]

1. Download the MagnaTagATune similarity data (comparisons_final.csv)! It contains a list of triplets
with clip IDs and paths as well as the number of votes per clip from the similarity game.

2. Turn this data into a set of relative distance constraints!
3. The data contains many contradictions. Discuss possible reasons for this!

4. How could the game for collecting this data be changed to reduce or even avoid contradicting
constraints?
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Exercise 22.6 [Filtering Constraints]

Given the set of constraints obtained in Exercise 22.5, remove contradictions using the graph-based
method described in Section 22.2.3. How many constraints are removed in each of the steps? What does
this tell you about the data?

Exercise 22.7 [Pitch/Volume/Timbre/Duration - Audio Features &
Distances]

1. Download the MagnaTagATune audio features (mp3_echonest_xml.zip) and unzip the file! This will
result in one XML file per clip. The file names match with the path information provided with the
similarity constraints appending “.xml” to each path.

2. For each clip referenced in the similarity constraints, extract the features listed in Table The

feature dim. value description distance measure

key 1 0 to 11 (one of the 12 keys) or —1 (none)  binary (exact match)
mode 1 0 (minor), 1 (major) or —1 (none) binary (exact match)
loudness 1 overall value in decibel (dB) absolute difference (L1)
tempo 1 in beats per minute (bpm) absolute difference (L1)
time signature 1 3t0 7 (3 to I), 1 (complex), or —1 (none) binary; §(3,6) = 0.5
pitch mean 12 dimensions correspond to pitch classes Euclidean distance (L2)
pitch std. dev. 12 dimensions correspond to pitch classes Euclidean distance (L2)
timbre mean 12 normalized timbre PCA coefficients Euclidean distance (L2)
timbre std. dev. 12 normalized timbre PCA coefficients Euclidean distance (L2)

Table 22.1: Features available for the MagnaTagATune dataset and respective distance measures. Top
section: Globally extracted features. Bottom section: Aggregation of features extracted per segment.

features pitch and timbre are given per segment. They need to be aggregated using the mean and
standard deviation. Each feature will serve as a distance facet using the distance measures listed
in the table.

3. For each distance constraint given by a triplet (s, a,b), compute the facet distance differences, i.e.,
the z; in Equation 22.7 or the dw; in Equation 22.12.

Exercise 22.8 [Pitch/Volume/Timbre/Duration - Learning Facet Weights]

Given the facet distance differences (one vector per distance constraint), learn facet weights that violate
as few distance constraints as possible!

1. Apply the gradient descent learning scheme described in Section 22.2.4.1! Start with uniform
weights and monitor the number of constraint violations after each update. Choose a suitable
initial learning rate that results in reasonable step sizes. To reduce the learning rate progressively,
you can multiply it with a factor between 0 and 1. Let the optimization run for a fixed number of
iterations and keep track of the best solution. Optionally, you can aggregate the dw; values from
multiple violated constraints and then update the weights only once for such a mini-batch. This
will result in much smoother weight updates.

2. For comparison, train a linear support vector machine (SVM) for the corresponding binary classifi-
cation problem as described in Section 22.2.4.3! Extract the weights (feature coefficients) from the
learned solution and check whether they are all non-negative (Equation 22.4). If some are negative,
transform them accordingly and compare the number of constraint violations before and afterwards.
Compare the result with the outcome of the gradient descent approach.

3. Which learning approach worked better? Which one was faster? Which one was easier to apply?
Discuss possible reasons why it was impossible to satisfy all constraints!

Exercise 22.9 [Pitch/Volume/Timbre/Duration - Projections]

Apply multi-dimensional scaling (MDS) to project the clips from Exercise 22.7 into two-dimensional space.
Compute one projection for each of the 9 distance facets and another one for a weighted combination of

54



all facets. (Either use uniform weights or the best solution you found in Exercise 22.8.) Visualize each
projection, compute the respective trustworthiness and continuity scores, and compare the results.
Hint: Use pre-computed distance matrices as input to the MDS.
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Chapter 23

Music Recommendation

(Dietmar Jannach and Geoffray Bonnin)

Basic Exercises

Exercise 23.1 [Basic Recommendation Techniques]

Describe the main ideas of collaborative filtering and content-based filtering techniques and their advan-
tages and shortcomings.

Exercise 23.2 [Specifics of Music Recommendation]

In which ways can music recommendation problems be different from other typical application scenarios
like the recommendation of shopping items on e-commerce sites?

Exercise 23.3 [Quality of Music Recommendation 1]

How can we evaluate the quality of music recommendations and why is this problem particularly chal-
lenging in academic settings?

Exercise 23.4 [Quality of Music Recommendation 2]

Discuss different factors that can influence the perceived quality of a recommendation list in the music
domain.

Advanced Exercises

Exercise 23.5 [Playlists]

Download the playlists data file from the supporting website of the book. The file contains 1,000 playlists
created and shared by users of Last.fm and has the following CSV fields:

user_id,playlist_id,position,artist_name,track_name.

The position field the represents the position of the track in the playlist.

Write an R script to convert the data into a file format which uses integers as IDs instead of artist and
track names as follows.

e Each artist name must be mapped to a unique integer (artistID).
e Each track name must be mapped to a unique integer (trackID).

e Each line of the output file must contain one playlist. A playlist is represented as a sequence of
pairs of the type “artistID:trackID”, i.e., the artist and track IDs have to be separated by a colon
character (“:”). The playlist entries have to be separated by a space character.

The playlist with the following raw format:
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6551544 ,599612,1,"The Beatles","Lucy in the Sky With Diamonds"
6551544 ,599612,2, "Radiohead", "Creep"

6551544 ,599612,3,"Pink Martini","Sympathique"

6551544,599612,4,"Ella Fitzgerald","Let’s Do It (Let’s Fall In Love)"
6551544 ,599612,5,"No Doubt","Don’t Speak"

6551544 ,599612,6,"Queen", "Bohemian Rhapsody"
6551544,599612,7,"Queen","Another One Bites the Dust"

could be translated into the following representation:

1036:1503 876:547 843:2318 333:1393 769:640 869:351 869:192

Save the resulting data in a text file called playlists-with-IDs.txt. Also save your mappings from artist
names and track names to the corresponding IDs to text files.

Some R hints:

e The content of the CSV file can be loaded using the function read.csv:

data <- read.csv("playlists.csv", encoding="UTF-8")

e The list of distinct elements of the i*" column of the resulting data frame can be obtained using
the functions factor and levels. For instance, the playlist IDs can be obtained by writing:

playlist_ids <- levels(factor(datal[[2]])).

e Character vectors can be saved using the function writeLines:

fileConn <- file("artists-integer-ids.txt")
writeLines(artists, fileConn, useBytes=T)
close(fileConn)

Exercise 23.6 [Artist Co-Occurrences]

In the following three programming exercises, we will develop different music recommenders that generate
continuations of playlists.

People love popular tracks. Program a baseline algorithm PopRank which simply recommends the
most popular tracks. The algorithm should take the file playlists-with-IDs.tzt of the previous exercise as
an input and compute the 10 most popular tracks. The most popular tracks are those that appear most
often in the playlist file.

Inspect the resulting playlist continuation by mapping the IDs back to artist and track names. Which
are the most popular tracks in the dataset?

Some R hints:

e Some code to load the playlists and the ID mappings can be found in the file data-loader.R.

e Some helper functions to handle the mappings between the IDs and the artist and track names and
to display the recommendations in a readable way can be found in the file helpers.R. The file also
contains other functions that will be useful for the next exercises.

e In order to compute the occurrences of each track in the playlists, the function table can be used.
Concatenate all playlists in one single vector and then apply the function on the resulting vector.

e The final recommendation list can then be obtained by sorting the tracks in decreasing order of the
number of occurrences using the function sort and by selecting the 10 first elements.

Exercise 23.7 [Nearest Neighbors]

Our next playlisting algorithm will go a step further by taking into account a given playlist beginning
additionally to the set of playlists. Develop a k-Nearest-Neighbor (kNN) algorithm as described in [I]
and test it with some arbitrary playlists.

The kNN algorithm generally works as follows. It takes a given playlist as an input and compares
it with all other existing playlists to determine a set of k playlists which are the most similar ones
compared to the given playlist. The most similar playlists are called neighbors. The algorithm then
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selects tracks appearing in these neighboring playlists as possible continuations of the given playlist. The
underlying assumption is that if tracks frequently co-occurred in similar playlists they are also suited for
the given playlist. To rank the possible next tracks, a score is computed for every track that appears in
a neighboring playlist.

More formally, the algorithm should work as follows:

1. For each playlist p in the set of playlists
(a) Compute the binary cosine similarity of p with the given playlist g:

lp Nyl

sim(p,g) =
Iplllgll

(b) If the similarity is greater than 0, determine the tracks that are not present in the given
playlist.

(¢) Update the score of each of these tracks by adding the similarity value to the previous score.

2. Return the top 10 tracks ordered by their score.

Inspect the resulting playlist continuations and assess their suitability for the given playlist.

Some R hints:

e The overlap between each playlist of the playlist dataset and the given playlist can be obtained
using the function intersect.

e The input playlist beginning can be constructed using the function addTrack of the file helpers. R.

Exercise 23.8 [Co-occurance]

Our final algorithm uses a combination of popularity and co-occurrence patterns. It is called “Collocated
Artists — Greatest Hits (CAGH)” and described in [I]. The general idea is to find artist co-occurrences.
Let us assume that the given playlist for example contains tracks by The Beatles. If many playlists that
contain tracks of The Beatles also contain tracks of The Rolling Stones, the CAGH algorithm will return
(among others) the most popular tracks of The Rolling Stones.

The algorithm computes a score for each recommendable track and works as follows.

1. Count the occurrences of all the tracks of all the artists.
2. Compute the artist occurrences.

3. Compute all artist collocation values (i.e., the number of times each possible pair of artists appears
in a same playlist)

4. For each artist a of the given playlist ¢:

(a) Find the most similar artists to a in the set of playlists. The similarity between two artists a
and b is the binary cosine:

5, (Lp(a) - 1,(b))
V0 1o(@) 3, 1,(0)

sim(a,b) =

with 1,(a) =1 if a playlist p contains a and 0 otherwise.

(b) Set the score of each of the tracks of each of the similar artists b as: track count times the
computed similarity.

5. Return the top 10 tracks ranked by the computed score.
Again, inspect the resulting playlists and assess their suitability for the given set of test playlists.

Some R hints:

e The set of artists of a playlist can be obtained using the function extractArtists of the file
helpers.R.

e The occurrences of tracks per artist can be stored as key-value pairs using lists:
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key <- queen

value <- queensTrackCount

artistTrackCounts <- list()

artistTrackCounts[[ queen ]] <- queensTrackCount

In the code above, the variable queen contains the ID value of the artist Queen (e.g., 869). The
variable queensTrackCount contains associations between track IDs and the number of occurrences
of the corresponding track.

Exercise 23.9 [Quality of Playlist Continuations]

Read paper [I] and discuss the possible different ways of assessing the quality playlist continuations.
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Chapter 24

Automatic Composition
(Maik Hester and Bileam Kiimper)

Basic Exercises

Exercise 24.1 [Pitch - L-System]
Apply the rules in Section 24.3.1.1 (L-system) to the 2 notes {a} and {b}.

Hint: The generation of L-Systems can be done by the R function “LSys” provided in “functions”.

Exercise 24.2 [Pitch - Mutation]

Expand the code for Basic Exercise 24.1 with rules from 24.2.2.3 (mutation) to compose a 2-note piece
of music.

Hint: The generation of L-Systems and mutations can be done by the R functions “LSys” and
“mutation” provided in “functions”. Use the output of “LSys” as the input of “mutation”.

Exercise 24.3 [Pitch - Weighted Random Composition]
Compose a whole tone melody of a given probability of intervals:

e diminished fifth down: 2/20
e major third down: 3/20

e major second down: 4/20

e unison: 2/20

e major second up: 4/20

e major third up: 3/20

e diminished fifth up: 2/20

Choose a starting note and a total length and let the computer compose the other notes.

Exercise 24.4 [Recombination]

Take a number of melodies (the more the better) in the same meter and key (transposed if necessary)
and cut them into pieces, each one bar long. Mix the pieces and draw eight of them to get a new melody.
Repeat the exercise ten times and write down the resulting melodies. Choose one that you (or your
friends) like best. What makes a melody a “good” melody? Keep the previously cut pieces for Advanced
Exercise [24.5)
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Advanced Exercises

Exercise 24.5 [Composition Rules]

In order to improve the melodies in Basic Exercise [24.4] evaluate them by checking the following criteria:
e The last note should be the tonic of your key.
e The first note should be one of the tonic chord notes of your key.
e Bar 4 should end with a note from the dominant chord.

If you are not satisfied, yet, find more rules.

Exercise 24.6 [Dependent Probability Composition]

Expand the code for Basic Exercise by applying a little Markov chain. For each interval let the
probability of the next interval be as follows:

e diminished fifth down:

— unison: 1/10

— major second up: 1/10
major third up: 3/10
diminished fifth up: 6/10

e major third down:

unison: 1/10

— major second up: 2/10
major third up: 3/10
diminished fifth up: 3/10

e major second down

— major second down: 1/10
— unison: 2/10

— major second up: 3/10

— major third up: 2/10

— diminished fifth up: 2/10

e unison:

— major third down: 1/10
— major second down: 2/10
— unison: 1/10

— major second up: 3/10

— major third up: 1/10

— diminished fifth up: 2/10

e major second up:

— major third down: 2/10
— major second down: 2/10
— unison: 2/10

— major second up: 3/10

— major third up: 1/10

e major third up:

— diminished fifth down: 1/10
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— major second down: 3/10
— unison: 2/10

— major second up: 2/10

— major third up: 1/10

— diminished fifth up: 1/10

e diminished fifth up:

major third down: 3/10
— major second down: 4/10
— unison: 2/10

— major second up: 1/10

Exercise 24.7 [Pitch - Evaluation]

Compare the pitches of your new melodies from Exercise with those of one of your favorite songs.
For the first note in each bar calculate the difference between the pitches in halftone steps. Sum up all
the values and find the mean value. The melody with the smallest mean value should be closest to your
favorite song. Is it the best one?

Exercise 24.8 [Live Automatic Sound Installation]

Design a program for a live automatic sound installation which delivers sound from a live audio stream
or previously recorded files. The program should decide whether to play back a file from its archive or
to record a new file from the audio stream. While the archive grows there should always be a certain
probability for new recordings.
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Chapter 25

Implementation Architectures
(Martin Botteck)

Exercises

Exercise 25.1 [Processing Chain]

What are the three main processing stages required to sort a set of music tracks into categories? Provide
a short description of each stage’s task!

Exercise 25.2 [Processing Chain]

Which of the stages listed above is least demanding in terms of processing power?

Exercise 25.3 [Technical Criteria]

Which other technical criteria besides processing power required are to be applied in order to valuate a
potential implementation architecture?

Exercise 25.4 [Further Criteria]

Why is it not enough to search for a solution that constitutes an optimum according to the technical
criteria listed above? List at least three further criteria!

Exercise 25.5 [Player Device Processing]

A mobile phone CPU running at 1 GHz and consuming 3,56 - 107! mWh per clock cycle will be able to
classify 400 songs/minute. Feature processing takes 3 minutes per song on average. The phone provides
a battery holding 1.800 mAh at 3,6 Volts. How long does it take for a music collection of 4.000 songs to

1.
2.
3.

extract and process the features needed?
classify the songs into a given category?
How many recharges of the battery will be needed?

How will these values change in case processing is performed by a background task consuming 5
percent of the CPU time?
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Chapter 26

User Interaction
(Wolfgang Theimer)

Basic Exercises
Exercise 26.1 [Functions]

What are the functions of a music processing system?

Exercise 26.2 [Architecture]

Draw a top-level architecture of a music processing system which processes user input and communicates
with other systems.

Exercise 26.3 [Audio input]

For what purpose can you use audio input in music processing systems?

Exercise 26.4 [Multi-modal interaction]
What are the advantages of multi-modal interaction?
Advanced Exercises

Exercise 26.5 [Query-by-humming]

Describe the query-by-humming concept for music retrieval.

Exercise 26.6 [Visual presentation]

How can a music collection be represented visually? Provide an example.

Exercise 26.7 [Context]

Define the term ”context” in music interaction.

Exercise 26.8 [Implementation architectures]

Describe the impact of latency and user feedback for music processing systems.
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Chapter 27

Hardware Architectures for Music

Classification
(Ingo Schmiadecke and Holger Blume)

Basic Exercises

Exercise 27.1 [Processor vs. ASIC]

List the advantages and disadvantages of general purpose processors (GPPs) over application-specific
integrated circuits (ASICs).

Exercise 27.2 [FPGA]

What are the basic building blocks of an FPGA?

Exercise 27.3 [GPP vs. GPU]

A signal processing algorithm should be implemented either on a general purpose processor or a graphical
processing unit. Which structural property of the algorithm would be beneficial for an implementation
on a GPU and why? What is the limit of that property, if you are using a general purpose processor
instead?

Exercise 27.4 [Parallel Processing Schemes]
Name two parallel processing schemes, which exploit data or instruction level parallelism to process

multiple data points.

Advanced Exercises

Exercise 27.5 [Critical Path]

In order to determine the maximum reachable clock frequency of a custom logic circuit, the longest delay
path (critical path) of the circuit has to be calculated. The following logic circuit should be analyzed:
Given the following propagation delays ¢, of the logic gates:

® Iy, AND = 218
(] tnOR:?IlS
® 1, xOor = 318

Determine the critical path through the circuitry and calculate the maximum clock frequency.
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Figure 27.1: Custom logic circuit.

Exercise 27.6 [Quantitative Analysis of Data Path Architectures]

The following spectral difference square function (SDSF) calculates the squared difference between two
audio spectrograms:

N M
SDSF =33 [a(t. f) - y(t, ) (27.1)

t=1 f=1

Therefore, the following operations are required for this calculation:
[M x SUB+ M x MUL+ (M —1) x ADD] x N (27.2)

For the operations ADD, SUB and MUL the following cycle counts are defined for two target processors:

Cycles Cycles
Operation Processor 1  Processor 2
ADD 1 1
SUB 1 1
MUL 10 1

Table 27.1: Operation cycle counts for target processors 1 and 2

Calculate the required cycle counts for both target processors using equation and table Which
processor is faster? What is the drawback with the faster processor?

Exercise 27.7 [Evaluation of Architectures using the ATE metric]

Three different architectures are available to classify a music data base of 1000 songs of equal length.

e The first architecture is a multi-core CPU, consisting of two cores running at 1 GHz. The area of
each core is 435 mm?. This multi-core CPU consumes about 3.56 - 1071 Wh per clock cycle and
can classify 332 songs per minute.

e The second architecture is a GPU with 2000 cores consuming 100 watts. The whole data base is
classified using this GPU in 161 seconds. The die size of the GPU is 5.1 - 108 um?.

e The third architecture is an FPGA design. The area of the FPGA is 756 mm? and 5.2 - 10% J are
consumed to classify the database. One song is classified within 0.1 seconds.

Determine the ATE cost for these three architectures, in order to evaluate the suitability of these archi-
tectures for music classification.

Exercise 27.8 [Pipeline]

1. In Fig. a b-stage instruction pipeline for a processor is shown. An assembler code for this
processor is listed in Fig. Identify all possible read after write (RAW) and write after read
(WAR) conflicts.
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Figure 27.2: A 5-stage instruction pipeline architecture of a processor.

addi $t12, $t13, 20
addi $t13, $t14, 20
mul $t22, $s15, $s16
mul $t20, $s7, $s9
mul $t7, $t20, $s9
mul $t32, $s31, $s17
addi $t4, $t6, 20
addi $t3, $t1, 20
addi $t2, $t3, 20

Figure 27.3: Assembler code with conflicts.

2. The throughput of a digital signal processor can be increased by pipelining. The throughput of a
processor with NV pipeline stages is approximated using the following equation:

5.3 ns+ 1.1 ns

R=11s1.N
5 53 ns+ N -1.1 ns

(27.3)

The area of the processor is increasing with the number of pipeline stages. This increase is approx-
imated using the following equation:

A= (1.3 mm? + N -0.15 mm?) (27.4)

Determine the number of pipeline stages for the most efficient processor, by using the metric
E¢p = % to estimate the efficiency.
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Chapter A

Appendix 1: Databases for Exercises

General

In this document we describe all databases used in the exercises. They can be downloaded from the book
website: http://sig-ma.de/music-data-analysis-book.

List of Databases

1.
2.

svmRData: Characteristics of guitar and piano tones prepared for input in R.

Genres: Music and features for two genre classification tasks “classic against others” and “electronic
against others”

. 1000 Songs: 744 copyright-free songs with annotated emotions and genres.

Playlists: Contains 1,000 playlists created and shared on Last.fm by music lovers. To be used for
the advanced exercises on music recommendation (Chapter 23).

. Spectrum: Spectra / periodograms of various real tones.

. Tempo Estimation: Mirex tempo train dataset contains 20 audio excerpts with tempo ground truth

annotation.

. Instrument Features: Characteristics of instrument tones with noise due to accompanying instru-

ments.
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A.l

The svm.RData database (/Data/svm) includes characteristics of 4309 guitar tones and 1345 piano
tones, the first 270 observations and the observations 546 — 4584 representing guitar tones (Category
= 0), the rest piano tones (Category = 1). The tones were taken from three databases, the McGill
master samples collection on DVD [?], the RWC music data base [?], and the Iowa musical instru-
The characteristics of these tones are divided into 5 blocks, the 1°¢ block repre-
sents the beginning of the tone, the last block the end. The characteristics enclose unwindowed MFCC
(“mfec_unget”), for each block 13 MFCCs (e.g., “mfcc_blockl1.12”), for each block 25 Linear Predic-
tion Codings LPCs (simplified spectral envelope)(e.g., “lpc_block3_17”), for each block 14 chroma char-
acteristics (e.g., “chroma_block2.14”), and the absolute amplitude envelope in 132 windows (without

ment samples [?].

svm.RData

blocks)(e.g., “huelle_31”). The data is prepared for input by R via

load("...
[1] "mfcc_ungef_1"
[4] "mfcc_ungef_ 4"
[7] "mfcc_ungef 7"
[10] "mfcc_ungef_10"
[13] "mfcc_ungef_ 13"
[16] "mfcc_ungef_16"
[19] "1lpc_block1_3"
[22] "lpc_blockl_6"
[25] "lpc_block1_9"
[28] "lpc_blockl_12"
[31] "lpc_blockl_15"
[34] "lpc_blockl_18"
[37] "lpc_blocki_21"
[40] "lpc_blockl_24"
[43] "lpc_block2_2"
[46] "lpc_block2_5"
[49] "lpc_block2_8"
[52] "1pc_block2_11"
[65] "lpc_block2_14"
[58] "lpc_block2_17"
[61] "lpc_block2_20"
[64] "lpc_block2_23"
[67] "lpc_block3_1"
[70] "lpc_block3_4"
[73] "lpc_block3_7"
[76] "lpc_block3_10"
[79] "lpc_block3_13"
[82] "lpc_block3_16"
[85] "lpc_block3_19"
[88] "lpc_block3_22"
[91] "lpc_block3_25"
[94] "lpc_block4_3"
[97] "lpc_block4_6"
[100] "lpc_block4_9"
[103] "lpc_block4_12"
[106] "lpc_block4_15"
[109] "lpc_block4_18"
[112] "lpc_block4_21"
[115] "lpc_block4_24"
[118] "lpc_block5_2"
[121] "lpc_block5_5"
[124] "lpc_block5_8"
[127] "lpc_block5_11"
[130] "lpc_block5_14"
[133] "lpc_block5_17"
[136] "lpc_block5_20"
[139] "lpc_block5_23"
[142] "mfcc_blockl_1"

(data repository)

"mfcc_ungef 2"
"mfcc_ungef 5"
"mfcc_ungef_ 8"
"mfcc_ungef_11
"mfcc_ungef_14"
"lpc_blockl_1"
"lpc_blockl_4"
"lpc_blockl_7"
"lpc_blockl_10"
"lpc_blockl_13"
"lpc_blockl_16"
"lpc_blockl_19"
"lpc_blockl_22"
"lpc_blockl_25"
"lpc_block2_3"
"lpc_block2_6"
"lpc_block2_9"
"lpc_block2_12"
"lpc_block2_15"
"lpc_block2_18"
"lpc_block2_21"
"lpc_block2_24"
"lpc_block3_2"
"lpc_block3_5"
"lpc_block3_8"
"lpc_block3_11"
"lpc_block3_14"
"lpc_block3_17"
"lpc_block3_20"
"lpc_block3_23"
"lpc_block4_1"
"lpc_block4_4"
"lpc_block4_7"
"lpc_block4_10"
"lpc_block4_13"
"lpc_block4_16"
"lpc_block4_19"
"lpc_block4_22"
"lpc_block4_25"
"lpc_block5_3"
"lpc_block5_6"
"lpc_block5_9"
"lpc_block5_12"
"lpc_block5_15"
"lpc_block5_18"
"lpc_block5_21"
"lpc_block5_24"
"mfcc_blockl_2"
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...svm/svm.RData")

"mfcc_ungef_3"
"mfcc_ungef_6"
"mfcc_ungef 9"
"mfcc_ungef_ 12"
"mfcc_ungef_ 15"
"lpc_block1l_2"
"lpc_blockl_5"
"lpc_blockl_8"
"lpc_blockl_11"
"lpc_blockl_14"
"lpc_blockl_17"
"lpc_blockl_20"
"lpc_block1l_23"
"lpc_block2_1"
"lpc_block2_4"
"lpc_block2_7"
"lpc_block2_10"
"lpc_block2_13"
"lpc_block2_16"
"lpc_block2_19"
"lpc_block2_22"
"lpc_block2_25"
"lpc_block3_3"
"lpc_block3_6"
"lpc_block3_9"
"lpc_block3_12"
"lpc_block3_15"
"lpc_block3_18"
"lpc_block3_21"
"lpc_block3_24"
"lpc_block4_2"
"lpc_block4_5"
"lpc_block4_8"
"lpc_block4_11"
"lpc_block4_14"
"lpc_block4_17"
"lpc_block4_20"
"lpc_block4_23"
"lpc_block5_1"
"lpc_block5_4"
"lpc_blockb5_7"
"lpc_block5_10"
"lpc_block5_13"
"lpc_block5_16"
"lpc_block5_19"
"lpc_block5_22"
"lpc_block5_25"
"mfcc_blockl_3"



[145]
[148]
[151]
[154]
[157]
[160]
[163]
[166]
[169]
[172]
[175]
[178]
[181]
[184]
[187]
[190]
[193]
[196]
[199]
[202]
[205]
[208]
[211]
[214]
[217]
[220]
[223]
[226]
[229]
[232]
[235]
[238]
[241]
[244]
[247]
[250]
[253]
[256]
[259]
[262]
[265]
[268]
[271]
[274]
[277]
[280]
[283]
[286]
[289]
[292]
[295]
[298]
[301]
[304]
[307]
[310]
[313]
[316]
[319]
[322]
[325]
[328]
[331]

"mfcc_blockl_4"
"mfcc_blockl 7"
"mfcc_blockl_10"
"mfcc_blockl_13"
"mfcc_blockl_16"
"mfcc_block2_3"
"mfcc_block2_6"
"mfcc_block2_9"
"mfcc_block2_12"
"mfcc_block2_15"
"mfcc_block3_2"
"mfcc_block3_5"
"mfcc_block3_8"
"mfcc_block3_11"
"mfcc_block3_14"
"mfcc_block4_1"
"mfcc_block4_4"
"mfcc_block4 7"
"mfcc_block4_10"
"mfcc_block4_13"
"mfcc_block4_16"
"mfcc_block5_3"
"mfcc_block5_6"
"mfcc_block5_9"
"mfcc_block5_12"
"mfcc_block5_15"
"huelle_2"
"huelle_5"
"huelle_8"
"huelle_11"
"huelle_14"
"huelle_17"
"huelle_20"
"huelle_23"
"huelle_26"
"huelle_29"
"huelle_32"
"huelle_35"
"huelle_38"
"huelle_41"
"huelle_44"
"huelle_47"
"huelle_50"
"huelle_53"
"huelle_56"
"huelle_59"
"huelle_62"
"huelle_65"
"huelle_68"
"huelle_71"
"huelle_74"
"huelle_77"
"huelle_80"
"huelle_83"
"huelle_86"
"huelle_89"
"huelle_92"
"huelle_95"
"huelle_98"
"huelle_101"
"huelle_104"
"huelle_107"
"huelle_110"

"mfcc_blockl_5"
"mfcc_blockl_8"
"mfcc_block1l_11"
"mfcc_blockl_14"
"mfcc_block2_1"
"mfcc_block2_4"
"mfcc_block2_7"
"mfcc_block2_10"
"mfcc_block2_13"
"mfcc_block2_16"
"mfcc_block3_3"
"mfcc_block3_6"
"mfcc_block3_9"
"mfcc_block3_12"
"mfcc_block3_15"
"mfcc_block4_2"
"mfcc_block4_5"
"mfcc_block4_8"
"mfcc_block4_11"
"mfcc_block4_14"
"mfcc_blockb5_1"
"mfcc_block5_4"
"mfcc_blockb5_7"
"mfcc_block5_10"
"mfcc_block5_13"
"mfcc_block5_16"
"huelle_3"
"huelle_6"
"huelle_9"
"huelle_12"
"huelle_15"
"huelle_18"
"huelle_21"
"huelle_24"
"huelle_27"
"huelle_30"
"huelle_33"
"huelle_36"
"huelle_39"
"huelle_42"
"huelle_45"
"huelle_48"
"huelle_51"
"huelle_b4"
"huelle_ 57"
"huelle_60"
"huelle_63"
"huelle_66"
"huelle_69"
"huelle_72"
"huelle_75"
"huelle_78"
"huelle_81"
"huelle_84"
"huelle_87"
"huelle_90"
"huelle_93"
"huelle_96"
"huelle_99"
"huelle_102"
"huelle_105"
"huelle_108"
"huelle_111"

"mfcc_blockl_6"
"mfcc_blockl_9"
"mfcc_block1l_12"
"mfcc_blockl_15"
"mfcc_block2_2"
"mfcc_block2_5"
"mfcc_block2_8"
"mfcc_block2_11"
"mfcc_block2_14"
"mfcc_block3_1"
"mfcc_block3_4"
"mfcc_block3_7"
"mfcc_block3_10"
"mfcc_block3_13"
"mfcc_block3_16"
"mfcc_block4_3"
"mfcc_block4_6"
"mfcc_block4_9"
"mfcc_block4_12"
"mfcc_block4_15"
"mfcc_block5_2"
"mfcc_block5_5"
"mfcc_block5_8"
"mfcc_blockb_11"
"mfcc_block5_14"
"huelle_1"
"huelle_4"
"huelle_T7"
"huelle_10"
"huelle_13"
"huelle_16"
"huelle_19"
"huelle_22"
"huelle_25"
"huelle_28"
"huelle_31"
"huelle_34"
"huelle_37"
"huelle_40"
"huelle_43"
"huelle_46"
"huelle_49"
"huelle_52"
"huelle_55"
"huelle_58"
"huelle_61"
"huelle_64"
"huelle_67"
"huelle_70"
"huelle_73"
"huelle_76"
"huelle_79"
"huelle_82"
"huelle_85"
"huelle_388"
"huelle_91"
"huelle_94"
"huelle_97"
"huelle_100"
"huelle_103"
"huelle_106"
"huelle_109"
"huelle_112"
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[334]
[337]
[340]
[343]
[346]
[349]
[352]
[355]
[358]
[361]
[364]
[367]
[370]
[373]
[376]
[379]
[382]
[385]
[388]
[391]
[394]
[397]
[400]
[403]
[406]
[409]
[412]
[415]
[418]
[421]
[424]

"huelle_113"
"huelle_116"
"huelle_119"
"huelle_122"
"huelle_125"
"huelle_128"
"huelle_131"
"chroma_blockl_2"
"chroma_blockl_5"
"chroma_blockl_8"
"chroma_blockl_11"
"chroma_blockl_14"
"chroma_block2_3"
"chroma_block2_6"
"chroma_block2_9"
"chroma_block2_12"
"chroma_block3_1"
"chroma_block3_4"
"chroma_block3_7"
"chroma_block3_10"
"chroma_block3_13"
"chroma_block4_2"
"chroma_block4_5"
"chroma_block4_8"
"chroma_block4_11"
"chroma_block4_14"
"chroma_block5_3"
"chroma_block5_6"
"chroma_block5_9"
"chroma_block5_12"
"Category"

"huelle_114"
"huelle_117"
"huelle_120"
"huelle_123"
"huelle_126"
"huelle_129"
"huelle_132"
"chroma_blockl_3"
"chroma_blockl_6"
"chroma_blockl_9"
"chroma_blockl_12"
"chroma_block2_1"
"chroma_block2_4"
"chroma_block2_7"
"chroma_block2_10"
"chroma_block2_13"
"chroma_block3_2"
"chroma_block3_5"
"chroma_block3_8"
"chroma_block3_11"
"chroma_block3_14"
"chroma_block4_3"
"chroma_block4_6"
"chroma_block4_9"
"chroma_block4_12"
"chroma_block5_1"
"chroma_block5_4"
"chroma_block5_7"
"chroma_block5_10"
"chroma_block5_13"

"huelle_115"
"huelle_118"
"huelle_121"
"huelle_124"
"huelle_127"
"huelle_130"
"chroma_blockl_1"
"chroma_blockl_4"
"chroma_blockl_7"
"chroma_blockl_10"
"chroma_blockl_13"
"chroma_block2_2"
"chroma_block2_5"
"chroma_block2_8"
"chroma_block2_11"
"chroma_block2_14"
"chroma_block3_3"
"chroma_block3_6"
"chroma_block3_9"
"chroma_block3_12"
"chroma_block4_1"
"chroma_block4_4"
"chroma_block4_7"
"chroma_block4_10"
"chroma_block4_13"
"chroma_block5_2"
"chroma_block5_5"
"chroma_block5_8"
"chroma_block5_11"
"chroma_block5_14"
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A.2 Genres

The genres database (/Data/Supervised_Classification) contains two genre classification tasks “classic
against others” and “electronic against others”.
The database contains the following files:

e dataTrain.csv: MFCC features of 2361 observations from “classic against others” (used in Chapter
12)

e dataTest.csv: MFCC features of 15387 observations from “classic against others” (used in Chapter
12)
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A.3 1000 Songs

The data set (/Data/Feature_Processing) contains some features for one track of the original data base.

e The file 2_14.arff contains the spectral centroid extracted for the track 2.mp3 from the database
using 22,050 Hz as a sampling frequency and extraction frames of 512 samples without overlap.

e The file 2_39.arff contains 13 MFCCs extracted for the track 2.mp3 from the database using 22,050
Hz as a sampling frequency and extraction frames of 512 samples without overlap.

URL for download of the original files: http://cvml.unige.ch/databases/emoMusic/.

(0]
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A.4 Playlists

The comma-separated data file (/Data/Music_Recommendation) contains 1,000 playlists created and
shared users of Last.fm. The file has the following format:

user_id,playlist_id,position,artist_name,track_name
where the position field represents the position of a track in a playlist.

An example playlist looks as follows:

6551544 ,599612,1,"The Beatles","Lucy in the Sky With Diamonds"
6551544 ,599612,2,"Radiohead", "Creep"

6551544 ,599612,3,"Pink Martini","Sympathique"

6551544,599612,4,"Ella Fitzgerald","Let’s Do It (Let’s Fall In Love)"
6551544 ,599612,5,"No Doubt","Don’t Speak"

6551544 ,599612,6, "Queen", "Bohemian Rhapsody"
6551544,599612,7,"Queen", "Another One Bites the Dust"
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A.5 Spectrum

The database (Data/The_Musical_Signal/Spectrum) contains periodograms of real tones, the clarinet
tones taken from the McGill database and the flute tones from the database ”instrument samples”. At
the moment, there are two subdirectories, namely ”Clarinet” and ”Flute”. The clarinet subdirectory
includes the periodograms of the tones "D3” (146.832 Hz) till ”D6” (1174.66 Hz)(see below). The flute
subdirectory includes the periodograms of the tones ”C4” (261.626 Hz) till "F#6” (1479.98 Hz)(see
below). The data is prepared for input by R via

setwd("... (data repository) .../Spectrum")

Here is a list of the periodogram files in the database.

list.files(getwd())

[1] "Clarinet" "Flute"
list.files("Clarinet")
[1] "bcl_A#3.csv" "bcl_A#4.csv" "bcl_A#5.csv" "bcl_A3.csv" "bcl_A4.csv"
[6] "bcl_A5.csv" "bcl_B3.csv" "bcl_B4d.csv" "bcl_B5.csv" "bcl_C#4.csv"
[11] "bcl_C#5.csv" "bcl_C#6.csv" "bcl_C4.csv" "bcl_C5.csv" "bcl_C6.csv"
[16] "bcl_D#3.csv" "bcl_D#4.csv" "bcl_D#5.csv" "bcl_D3.csv" "bcl_D4.csv"
[21] "bcl_D5.csv" "bcl_D6.csv" "bcl_E3.csv" "bcl_E4.csv" "bcl_Eb5.csv"
[26] "bcl_F#3.csv" "bcl_F#4.csv" "bcl_F#5.csv" "bcl_F3.csv" "bcl_F4.csv"
[31] "bcl_F5.csv" "bcl_G#3.csv" "bcl_G#4.csv" "bcl_G#5.csv" "bcl_G3.csv"
[36] "bcl_G4.csv" '"bcl_G5.csv"
list.files("Flute")
[1] "f1_A4.csv" "f1_A5.csv" "f1_A#4.csv" "f1l_B4.csv" "f1_B5.csv"
[6] "fl_C4.csv" "f1_C5.csv" "fl1_C6.csv" "fl_C#4.csv" "f1l_C#5.csv"
[11] "f1_C#6.csv" "f1_D4.csv" "f1_D5.csv" "fl_D6.csv" "f1_D#4.csv"
[16] "f1_D#5.csv" "f1_D#6.csv" "fl_E4.csv" "f1_E5.csv" "f1_E6.csv"
[21] "f1_F4.csv" "f1_F5.csv" "f1_F6.csv" "f1_F#4.csv" "fl1_F#5.csv"
[26] "fl_F#6.csv" "fl_G4.csv" "f1_G5.csv" "f1_G#4.csv" "f1l_G#5.csv"
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A.6 Tempo estimation

The mirex tempo train dataset contains 20 audio excerpts with tempo ground truth annotation.
URL for download: http://www.music-ir.org/mirex/wiki/2006:Audio_Tempo_Extraction.
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A.7 Instrument Features

The database (/Data/Instrument_Recognition/inst_features) contains two feature sets with characteristics
calculated by means of the MATLAB MIR-toolbox from music pieces which are temporally segmented
w.r.t. the onsets of the melody tones. This means one observation corresponds to one melody tone with
additional noise from accomponying instruments. The first feature set (instruments_original.txt) consists
of features, which is derived from WAVE data directly. The second feature set (instruments AM.txt)
is derived by pre-processing the WAVE data using an auditory model. Both feature sets consist of 850
observations of 5 instruments (170 observations for each one). The first feature set contains 21 features
and the target variable “Instrument”. The second feature set contains 21 - 40 = 840 features and the
target variable “Instrument”. See Section 18.4 for further information. The data is prepared for input
by R via

data_orig <- read.table("... (data repository) ...inst_features/inst_orig.txt", header=T) and
data_AM <- read.table("... (data repository) ...inst_features/inst_AM.txt", header=T).
In R you can use functions like summary() or head() to get more information about the data sets.

For example:

> summary (data_orig)

mean_flux sd.flux. rms lowenergy rolloff
Min. : 0.0001 Min. : 0.000 Min. :0.000032 Min. :0.1333 Min. : 1330
1st Qu.: 8.4050 1st Qu.: 1.620 1st Qu.:0.021383 1st Qu.:0.4000 1st Qu.: 2772
Median :10.9810 Median : 2.643 Median :0.029542 Median :0.5000 Median : 3138
Mean :13.2769 Mean 3.808 Mean :0.033780 Mean :0.4946 Mean : 3567
3rd Qu.:16.3065 3rd Qu.: 4.978 3rd Qu.:0.042380 3rd Qu.:0.5789 3rd Qu.: 3938
Max. :67.0336 Max. :30.919 Max. :0.159860 Max. 0.8333 Max. 113231
brightness irregularity entropy mfccl mfcc2
Min. :0.1366 Min. :0.3608 Min. :0.3958 Min. :-1.230 Min. :-3.2051
1st Qu.:0.4267 1st Qu.:0.9067 1st Qu.:0.6689 1st Qu.: 2.025 1st Qu.:-1.1181
Median :0.5012 Median :1.1273 Median :0.7055 Median : 2.450 Median :-0.8543
Mean :0.5038 Mean :1.1317 Mean :0.6969 Mean : 2.433 Mean :-0.8246
3rd Qu.:0.5795 3rd Qu.:1.4035 3rd Qu.:0.7362 3rd Qu.: 2.896 3rd Qu.:-0.5230
Max. :0.9851 Max. :1.9149 Max. :0.8878 Max. : 4.895 Max. : 1.5943
mfcc3 mfccd mfcch mfcc6
Min. :-0.6602 Min. :=1.297927 Min. :—-1.05026 Min. :-1.57832
1st Qu.: 0.8172 1st Qu.:-0.166017 1st Qu.:-0.34430 1st Qu.:-0.43302
Median : 1.0727 Median : 0.062583 Median :-0.19446 Median :-0.23899
Mean ¢ 1.0229 Mean : 0.005945 Mean :-0.19398 Mean :-0.27408
3rd Qu.: 1.3119 3rd Qu.: 0.244153 3rd Qu.:-0.04232 3rd Qu.:-0.07095
Max. 2.7948 Max. : 0.642582 Max. : 0.95208 Max. : 0.56779
mfcc7 mfcc8 mfcc9 mfccl0
Min. :—-1.251251 Min. :-1.61326 Min. :-1.3870 Min. :—1.47283
1st Qu.:-0.179461 1st Qu.:-0.22774 1st Qu.:-0.1137 1st Qu.:-0.21855
Median : 0.043664 Median :-0.04636 Median : 0.1634 Median : 0.08024
Mean :-0.005631 Mean :—0.02966 Mean 1 0.1441 Mean : 0.01726
3rd Qu.: 0.225765 3rd Qu.: 0.15962 3rd Qu.: 0.4147 3rd Qu.: 0.33581
Max. :1.013437 Max. : 1.33007 Max. 1.5591 Max. :1.20021
mfccll mfccl2 mfccl3 Instrument
Min. :—-1.5087 Min. :-1.6512 Min. :-1.0076 flute :170
1st Qu.:-0.3497 1st Qu.:-0.1393 1st Qu.:-0.2269 clarinet:170
Median :-0.0706 Median : 0.1046 Median : 0.0307 oboe :170
Mean :-0.0634 Mean : 0.1197 Mean : 0.0482  trumpet :170
3rd Qu.: 0.2143 3rd Qu.: 0.3655 3rd Qu.: 0.2982 violin :170
Max. : 1.5199 Max. : 1.5448 Max. 1.3177
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Chapter B

R- and Matlab-Functions for
Exercises

General

In what follows all R- and Matlab-Functions prepared for the exercises will be described so that the
reader has an idea of their aim and their input and output, and is able to study the code.

List of Functions

1. ACF: Autocorrelation function in R in order to estimate the fundamental frequency

2. YIN: Mean squared difference function in R in order to estimate the fundamental frequency
Ceps: Cepstrum in R in order to estimate the fundamental frequency

quinn: Quinn method in R in order to estimate the fundamental frequency

histogram: R function, plots two different histograms in one plot

scatterplot: R function, plot two different scatterplots in one plot

amplMax: R function, calculates the feature “amplitude maximum”

specFlux: R function, calculates the feature “spectral flux”

© »® N o o s W

Lsys: R function to compose a 2-note piece of music after the rules of the L-System
10. mutation: R function to compose a 2-note piece of music after the rules of mutation

11. plot_spectrum: R function, plots the frequency spectrum
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B.1 ACF

The function ACF calculates the autocorrelation function in R in order to estimate the fundamental
frequency. You can specify the following input parameters:

w: object of class Wave (prepared by tuneR),
N: number of signal samples [default: 1000],
fmin: minimum frequency [50],
fmax: maximum frequency [2000],
plot: plot parameter [FALSE)]

Output is the fundamental frequency f0.
The function can be called in R, e.g., via

ACF(W1, plot = TRUE).

The code of the function looks as follows:

ACF <- function(w, N = 1000, fmin = 50, fmax = 2000, plot = FALSE){
x <- w@left # signal time series
sr <- w@samp.rate # sample rate
n <- length(x)/2
a <- rep(0,n)
tau <- 1:n
for(i in 1:n){
# equation 4.43
ali]l <- sum(x[1:N]*x[(1+tauli]): (N+taulil)])
}
# find peaks in ACF:
peak_idx <- which(diff (sign(diff(a)))==-2)+1
idx_max <- round(sr/fmin) # no frequencies smaller than fmin
peak_max <- which(peak_idx < idx_max) [length(which(peak_idx < idx_max))]
idx_min <- round(sr/fmax) # no frequencies larger than fmax
peak_min <- which(peak_idx > idx_min) [1]
peaks <- peak_idx[peak_min:peak_max]
# find first maximum of a:
m <- max(a[peaks])
idx <- abs(a[peaks] - m) < le-8
idx <- which(idx)
idx <- peaks[idx[1]] # index of fundamental frequency
fO <- sr / idx # fundamental frequency
if (plot){
1 <- round(max(a))
plot(all:(n/2)], type = "1", xlab = "Lag", ylab = "ACF")
abline(0,0)
lines(x = rep(idx, 1*2+1), y = -1:1, col = "red")
}
return(£0)
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B.2 YIN

The function YIN calculates the mean squared difference in R in order to estimate the fundamental
frequency. You can specify the following input parameters:

w: object of class Wave (prepared by tuneR),
N: number of signal samples [default: 1000],
fmin: minimum frequency [50],
frmax: maximum frequency [2000],
plot: plot parameter [FALSE)]

Output is the fundamental frequency f0.
The function can be called in R, e.g., via

YIN(W1, plot = TRUE).

The code of the function looks as follows:

YIN <- function(w, N = 1000, fmin = 50, fmax = 2000, plot = FALSE){
x <- w@left # signal time series
sr <- w@samp.rate # sample rate
n <- length(x)/2
d <- rep(0,n)
tau <- 1:n
for(i in 1:n){
# equation 4.44
dlil<- sum((x[1:N] - x[(1+tauli]): (N+taul[i])])"2)
}
# find local minimum in mean-squared difference:
peak_idx <- which(diff (sign(diff(d)))==2)+1
idx_max <- round(sr/fmin) # no frequencies smaller than fmin
peak_max <- which(peak_idx < idx_max) [length(which(peak_idx < idx_max))]
idx_min <- round(sr/fmax) # no frequencies larger than fmax
peak_min <- which(peak_idx > idx_min) [1]
peaks <- peak_idx[peak_min:peak_max]
# find first minimum of d:
m <- min(d[peaks])
idx <- abs(d[peaks] - m) < le-8
idx <- which(idx)
idx <- peaks[idx[1]] # index of fundamental frequency
fO <- sr / idx # fundamental frequency
if (plot){
1 <- round(max(d))
plot(d, type = "1", xlab = "Lag", ylab = "mean-squared difference")
abline(0,0)
lines(x = rep(idx, 1*2+1), y = -1:1, col = "red")
}
return(£0)
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B.3 Ceps

The function Ceps calculates the cepstrum in R in order to estimate the fundamental frequency. You
can specify the following input parameters:

w: object of class Wave (prepared by tuneR),
fmin: minimum frequency [50],
fmax: maximum frequency [2000],
plot: plot parameter [FALSE)]

Output is the fundamental frequency f0.
The function can be called in R, e.g., via

Ceps (Wi, plot = TRUE).
The code of the function looks as follows:

Ceps <- function(w,fmin = 50, fmax = 2000, plot = FALSE){
x <- w@left # signal time series
sr <- w@samp.rate # sample rate
compute cepstrum:
<- fft(x, inverse = FALSE)
<- log(abs(s))
<- Re(fft(1l, inverse = TRUE))
find peaks in cepstrum:
peak_idx <- which(diff(sign(diff(c)))==-2)+1
idx_max <- round(sr/fmin) # no frequencies smaller than fmin
peak_max <- which(peak_idx < idx_max) [length(which(peak_idx < idx_max))]
idx_min <- round(sr/fmax) # no frequencies larger than fmax
peak_min <- which(peak_idx > idx_min) [1]
peaks <- peak_idx[peak_min:peak_max]
# find first maximum of c:
m <- max(c[peaks])
idx <- abs(c[peaks] - m) < 1le-8
idx <- which(idx)
idx <- peaks[idx[1]] # index of fundamental frequency
fO <- sr / idx # fundamental frequency
if (plot){
1 <- round(max(c))
plot(c[2:1ength(c)], type = "1", xlab = "Quefrency (s)", ylab = "Cepstrum")
abline(0,0)
lines(x = rep(idx, 1*2+1), y = -1:1, col = "red")
}
return(£0)

= 0o H n #H#
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B.4 quinn

The function quinn realizes the Quinn method in order to estimate the fundamental frequency .

can specify the following input parameters:

oobj: object of class Wave (prepared by tuneR),

Output is the

fundamental frequency f0.

The function can be called in R, e.g., via

quinn(Wi).

The code of the function looks as follows:

quinn <- function(oobj){

fftres <-
peak.2 <-
alphal <-
alpha2 <-
deltal <-
delta2 <-

fft(oobjeleft) [-1]
which.max(abs(fftres[1:round(length(fftres)/2)]1))
Re(fftres[peak.2-1]/fftres[peak.2])
Re(fftres[peak.2+1]/fftres[peak.2])
alphal/(1-alphal)

alpha2/(1-alpha2)

delta <- if(deltal > 0 && delta2 > 0) delta2 else deltal
f0 <- (peak.2 + delta) * oobj@samp.rate/length(oobj@left)

return(£0)
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B.5 histogram

The function histogram plots histograms of two different samples together into one plot. You can specify,
whether an approximated normal distribution should be plotted or not. You can specify the following
input parameters:

e vecl: Vector of the first sample

e vec2: vector of the second sample

e main, xlab, ylab: graphical parameters, caption and labels for the axis
e norm: normal distribution [FALSE]

Output is a plot with two histograms.
The function can be called in R, e.g., via

histogram(M1[,1], M[,1], main = "MFCCl: Pure sine (red) vs. sine with overtones (blue)",
xlab = "MFCC", ylab = "density")

The code of the function looks as follows:

histogram <- function(vecl, vec2, main, xlab, ylab, norm = FALSE){
ml <- mean(vecl)
m2 <- mean(vec2)
sl <- sd(vecl)
s2 <- sd(vec2)
hl <- hist(vecl, plot
h2 <- hist(vec2, plot
dl <- hi$density
d2 <- h2$density
bl <- hi$breaks
b2 <- h2$breaks
ylim <- c(0, min(ceiling(dl), ceiling(d2)))
xlim <- c(min(min(bl), min(b2)), max(max(bl), max(b2)))
plot(hl, freq = FALSE, xlim = xlim, ylim = ylim, col = rgb(1,0,0,0.5),
xlab = xlab, ylab = ylab, main = main, cex.axis = 1.5, cex.main = 1.5, cex.lab = 1.5)
plot(h2, freq = FALSE, xlim = xlim, ylim = ylim, col = rgb(0,0,1,0.5),
add = TRUE)
if (norm){
x <- seq(x1lim[1], x1im[2], 0.01)
curve(dnorm(x, mean = m1, sd = sl1), add
curve (dnorm(x, mean = m2, sd = s2), add
}
}

FALSE)
FALSE)

TRUE, 1lwd = 3, 1ty
TRUE, lwd = 3, 1ty

2, col
2, col

rgb(1,0,0))
rgb(0,0,1))
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B.6 scatterplot

The function scatterplot plots scatterplots of two different samples together into one plot. You can
specify the following input parameters:

e x: Vector of the first sample
e y: vector of the second sample
e main, xlab, ylab: graphical parameters, caption and labels for the axis

Output is a plot with two scatterplots.
The function can be called in R, e.g., via

scatterplot(M1, M, "Pure sine (red) vs. sine with overtones (blue)", xlab = "MFCC1",
ylab = "MFCC2")

The code of the function looks as follows:

scatterplot <- function(x, y, main, xlab, ylab){
xlim <- c(min(min(x[,1]), min(y[,1]1)), max(max(x[,1]), max(y[,11)))
ylim <- c(min(min(x[,2]), min(y[,2])), max(max(x[,2]), max(y[,2]1)))
plot(x, xlim = x1im, ylim = ylim, main = main, xlab = xlab, ylab = ylab,
cex.axis = 1.5, cex.main = 1.5, cex.lab = 1.5, col = rgb(1,0,0,0.5))
points(y, col = rgb(0,0,1,0.5))
}
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B.7 amplMax

The function amplMax is implemented in R and calculates the ‘amplitude maximum’ feature (maximum
of the absolute amplitude in each signal window). You can specify the following input parameters:

wave: object of class Wave (prepared by tuneR),
N: number of signal samples [default: 2048],

Output is the ‘amplitude maximum’ feature.

amplMax <- function(wave, N = 2048)

{
offset <- seq(l, length(wave@left) - N, by = N)
Apml .matrix <- matrix(0, N, length(offset))

# i-th column of the matrix Apml.matrix is the signal amplitude of the i-th frame
for (i in seq_along(offset)) {
Apml .matrix[1:N, i] <- wave@left[offset[i]:(offset[i] + N - 1)]
}
Max.amplit.wind <- apply(Apml.matrix, 2, function(x) max(abs(x)))
AmplitFeature <- diff(c(0, Max.amplit.wind))
return(AmplitFeature)
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B.8 specFlux

The function specFlux is implemented in R and calculates the ‘spectral flux’ feature (for each signal
window: sum of positiv changes of the spectrogram compared to the previous window). You can specify
the following input parameter:

e spectrogram: output of specgram function (signal R package).

Output is the ‘spectral flux’ feature.

specFlux <- function(spectrogram)
{
S <- spectrogram$sS #complex numbers
n <- dim(8S) [2]
# the filter H
H <- function(x){
(x+abs(x))/2
}

SF <- numeric(n)

for (i in 2:n){
SF[i] <- sum( H(abs(S[,i])-abs(S[, (i-1)1)) )
}

return(SF) # thus, the feature vector has the same no. of entries as the no. of windows
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B.9 LSys

The function Lsys composes a 2-note piece of music following the rules of the L-System. You can specify
the following input parameters:

e a, b: the two notes
e n: number of iterations
e Anfang: beginning of the music piece

Output is a sequence of the two notes a and b
The function can be called in R, e.g., via

LSys("a", "p", 5, Anfang = uan)
LSys(110, 138.59, 5, 110)

The code of the function looks as follows:

LSys <- function(a, b, n, Anfang){
vec <- Anfang
while(n !'= 0){
1 <- length(vec)
i<-1
while(i <= 1){
if (vec[i] == a){
vec[i] <- b
i <= i+l
}
elseq{
length(vec) <- 1 + 1
1 <- length(vec)
vec[(i+1):1] <- vec[i:(1-1)]
vec[i] <- a
i <= i+2
}
}
n <- n-1
}
return(vec)

}
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B.10 mutation

The function mutation composes a 2-note piece of music following the rules of mutation. You can specify
the following input parameters:

e a, b: the two notes
e 1n: number of mutations
e Anfang: beginning of the music piece (first measure)

Output is a sequence of the two notes a and b of length (n + 1)-length(Anfang)
The function can be called in R, e.g., via

mutatiOH(llall’ Ilbll’ 4’ C("a", Ilbll, Ilall’ Ilbll))
The code of the function looks as follows:

mutation <- function(a, b, n, Anfang){
vec <- Anfang
1 <- length(vec)
while(n != 0){
vec2 <- rep(0,1)
x <- sample(3,1)

if(x == 1){
for(i in 1:1){
if(vecl[i]l == a){
vec2[i] <- b
}
else{
vec2[i] <- a
3
}

}
else if(x == 2){
for(i in 1:1){
vec2[i] <- sample(c(a,b), 1)
}
}
else{
vec2 <- vec
i <- sample(1:1, 1)
vec2[i] <- "break"

3

vec <- c(vec, vec2)
n <- n-1
}

return(vec)

}
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B.11 plot_spectrum

The function plot_spectrum plots the frequency spectrum of sounds, saved in csv-files, as a periodogram.
You can specify the following input parameters:

e file_path: directory of the csv-file
e instrument, note: instrument and note, needed for the caption of the plot
The function can be called in R, e.g., via

DATA_PATH = ".../Data/" # Please adjust data path!

setwd (sprintf ("%s/The_Musical_Signal/Spectrum/", DATA_PATH))
par (mfrow = c(2,1))

plot_spectrum(’Clarinett/bcl_c4.csv’, ’Clarinett’, ’c4’)
plot_spectrum(’Flute/f1_C4.csv’, ’Flute’, ’c4’)

The code of the function looks as follows:

plot_spectrum <- function(file_path, instrument, note){
data <- read.csv(file_path, header = FALSE)
plot(datal,1], type = ’1’, xaxt = ’n’, xlab = ’frequency (Hz)’, ylab = ’magnitude’,
main = paste(’Spectrum of’, instrument, note))
x <- seq(0, 4000, 500)
1 = length(datal,1])
axis(1l, at = seq(0, 1, (1/(length(x)-1))), labels = x)
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Chapter C

Lists of Exercises for Higher-Level
Topics

General

In this document we list the exercises corresponding to higher-level features.

List of Higher-Level Features

1.
2.

pitch (including chroma, chords, harmony, and key),

volume (including loudness, energy, rests, vibrato, and amplitude modulation),

. timbre (including MFCC, spectrogram, formants, transients, instrument recognition, emotions),

and

. duration (including rhythm, measure, onset detection, ASDR identification, structure identification,

tempo recognition) as well as the topic

. genre (including music recommendation and organization).
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C.1 Pitch (including chroma, chords, harmony, and key)

2 The Musical Signal ......oiiuiiiiiiitiiniiiintneenteeentesensssenssssnssssnssssnses 6
2.1 [Pitch - Equal Temperament] ...........c..ouounouiniuiti it 6
2.4 [Pitch - Modulation, PSychoacoustics] .. ......c.ooueuiuii i 6
2.5 [Pitch / Volume - Amplitude Modulation and Vibrato] .......................oooo. 6

3 Musical Structures ... ..ottt ittt ittt ittt ittt 8
3.1 [Pitch - Interval] .. ... 8
3.2 [Pitch - Intervals, CONSONANCE] ... ...ttt ettt e 8
3.3 [Duration / Pitch - Measure, Meter, Key of Melodies| ....................oioiii. 9
3.4 [Pitch - Tuning SyStEImS] ... ..ottt e 9
3.5 [Pitch - Counterpoint] .. ......o..ouie it 10
3.6 [Pitch/Volume/Timbre/Duration - Gestalt] .......... ..., 10
3.7 [Pitch - HAIMOMY] .. vt ettt e e et e 10
3.8 [Pitch/Volume/Timbre/Duration - Analysis] ..., 11

4 Digital Filters and Spectral Analysis .......coiiiiiiiiiiiiiiiiiireennneennneennns 12
4.1 [Pitch - Linear SySteIml] . ... ...ttt 12
4.2 [Pitch / Timbre - Filter Design] .. ......ouiuiiii e 12
4.3 [Pitch - Spectral Analysis] ..........oiuiuiii 13
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6.4 [PItch - DFT] .o e e 17
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11.1 [Pitch - Distance, BIUeS| .......oouiii i 27
11.2 [Pitch - Distance, Blues] ....... ... 27
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12 Supervised Classification ...........oiuiiiiiiiiiiiiiiiiiiriinernrneenrnosnsassnnns 30
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Evaluation . ...t i i i it i i it it i i et i 32
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17.8 [Pitch - Typesetting] .. .....ouiuii e 43
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19.4 [Pitch - Constant-Q-transform] .......... ..ot 46
19.5 [Pitch - Chord recognition] ....... .. ... 46
Similarity-Based Organization of Music Collections ...........cciiiiiiiiiiiinnnns 53
22.7 [Pitch/Volume/Timbre/Duration - Audio Features & Distances] ......................... 54
22.8 [Pitch/Volume/Timbre/Duration - Learning Facet Weights] ...................o . 54
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C.2 Volume (including loudness, energy, rests, vibrato, and ampli-
tude modulation)

2 The Musical Signal ......oiiuiiiiiiiiiiiiiii ittt teeenteeensecsnssssnssssnsns 6
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C.3 Timbre (including MFCC, spectrogram, formants, transients, in-
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strument recognition, emotions)
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8 [Timbre - INStrument] .........o.ouio it 24
Unsupervised Learning .......c.uiiuiiiiiiiiiiiiiiiiiiiiiiiieieenenenneneenenns 27
11.8 [Timbre - Clustering vs. True Classes] ..........o.ouiiuiiniiiii i 29
Supervised Classification ..........coiiiiiiiiiiiiiiiiii ittt iiiiiitiiiienenenens 30
12.4 [Timbre - InStruments] .. ... ...ttt e 30
12.5 [Timbre - Random Forest, Instruments] .............c.o.oiiiiiiiiiiiiniiiin e 30
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Feature Processing .......ciuiiiiiiiiiiiiiiiiiiiiiiiiitiiienenenenenencnsnsnnnnns 35
14.5 [Timbre - Normalization] ............ooiuiiiii e 35
14.6 [Timbre - Feature Processing] ..........ouiuiiniuiii e 36
14.7 [Timbre - Structural Complexity] ...... ..o 36
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16.4 [Timbre - Phases of Instrument Sound] ........... ... . i 39
16.5 [Timbre - Distance Measure] ............o.ouniuiineuie et 39
Instrument Recognition ........ ...ttt ittt iiininenns 44
18.1 [Timbre - CharacteriStics] ... ......ouou ittt e 44
18.2 [Timbre - Characteristics] ... .......oouiiu it e e 44
18.3 [Timbre - Classification] .. ........o.iuiiiui e 44
18.4 [Timbre - Classification] .. .........o.ouiiuui i e 44
18.5 [Timbre - Feature Selection] ............o.ooii i 44
18.6 [Timbre - Hyperparameter TUning] .............oououiuieniunininniiiiiianeaenann. 44
18.7 [Timbre - Feature Selection] ............o.iiuiuiimi i 45
18.8 [Timbre - Hierarchical Taxonomy| ..............coiiiiiiiiiiiiiiiiii i, 45
Chord Recognition .........oiuiiiiiiiiiiiiii ittt ittt ittt iieeneenennennens 46
19.2 [Pitch / Timbre - Harmonic Frequencies] ............ .o, 46
3 0 5 T T 51
21.5 [Timbre - Characterization of Emotions] ........... ..o 51
Similarity-Based Organization of Music Collections ............cooiiiiiiiiiian.. 53
22.7 [Pitch/Volume/Timbre/Duration - Audio Features & Distances] .................c. ..., 54
22.8 [Pitch/Volume/Timbre/Duration - Learning Facet Weights] .............. ... .. 54
22.9 [Pitch/Volume/Timbre/Duration - Projections] ..............cooiiiiiiiiiiiiiiiiiniian.. 54

97



C.4 Duration (including rhythm, measure, onset detection, ASDR

identification, structure identification, tempo recognition)
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