
Department of Computer Science

Master’s Thesis

Constraint-based rearrangement

of music

Daniel Stoller

August 31, 2015

Supervisors:

Prof. Dr. Heinrich Müller, Chair of Computer Graphics

Dr. Igor Vatolkin, Chair of Algorithm Engineering

Department of Computer Science
TU Dortmund

Contents

1. Introduction 1

1.1. Music and music rearrangement . 1

1.2. Scope and results of the thesis . 3

1.3. Structure of the thesis . 6

2. Background and related work 9

2.1. Music theory . 9

2.2. Existing approaches . 12

2.3. Preliminary study . 13

2.4. Issues of the selected approach . 14

3. Overview 21

3.1. Problem statement . 21

3.2. System overview . 23

4. System components 27

4.1. Beat tracking system . 27

4.2. Preprocessing . 29

4.2.1. Transition costs regarding timbre 30

4.2.2. Transition costs regarding loudness 34

4.2.3. Automatic segmentation . 39

4.3. Path optimisation . 43

4.3.1. Problem formulation . 43

4.3.2. Estimating the path length a priori 45

4.3.3. Unified cost matrix . 50

4.3.4. Repetition avoidance . 52

4.3.5. Multiple goal A* algorithm 54

4.3.6. Segmentation enforcement with tolerances 70

4.4. Jump optimisation . 75

4.4.1. Synchronisation . 76

4.4.2. Loudness equalisation . 82

4.4.3. Crossfading . 94

4.5. Time-scale modification . 96

4.6. User interface . 97

5. Evaluation 103

5.1. Automatic evaluation . 103

5.1.1. Estimating the path length a priori 105

5.1.2. Path optimisation algorithms 107

5.1.3. Repetition avoidance . 112

5.1.4. Segmentation tolerance . 113

5.2. Listening study . 117

5.2.1. Transition quality . 119

5.2.2. Jump optimisation . 123

6. Conclusions 129

A. Additional information 133

A.1. Parameters . 133

A.2. Databases . 134

A.3. Experiment evaluations . 137

List of Figures 152

List of Algorithms 153

Bibliography 155

Index 161

Mathematical Notation

Notation Meaning

N Set of natural numbers 1, 2, 3, . . .

N0 Set of natural numbers 0, 1, 2, 3, . . .

R Set of real numbers

M = {m1, . . . ,mN} Set M of N elements mi

p Vector

pi Element i of the vector

pname Vector identified by ”name”

pname
i Element i of the vector identified by ”name”

pk k-th vector of a series of vectors

pk,i Element i of the k-th vector

A Matrix

Ai,j Element in row i and column j of matrix A

Aname Matrix identified by ”name”

Aname
i,j Element in row i and column j of matrix Aname

1. Introduction

This introductory section will provide the context necessary for understanding the

relevance of the contributions of this thesis. The importance of music and its rear-

rangement in particular will be discussed and the structure and main results of the

thesis will be presented.

At first, we will begin by introducing the task of rearranging music and its potential

applications in the following section 1.1. Afterwards, the scope of this thesis along

with the main contributions to the field of music rearrangement and the most im-

portant results of our work will be presented in section 1.2. The third section 1.3

will provide a brief overview of this thesis by summarising its main sections.

1.1. Music and music rearrangement

Music constitutes an integral part of our cultural life and is nearly omnipresent.

It pervades many areas of life, ranging from the use in advertisements and films

to concerts and in general any form of personal consumption. The dawn of the

digital era rapidly increased the accessibility of music and also made sharing and

redistributing existing and new musical pieces significantly easier. Additionally, it

allowed for computer-assisted editing of music, increasing the efficiency of many

music editing tasks. A few examples of many include adding reverberation effects

by simulating certain types of rooms or automatically correcting the sections of a

vocal recording where the vocalist did not quite hit the right note.

In recent years, the ever increasing processing power of computers in combination

with research in the field of music informatics steadily opened up new possibilities,

allowing for the accomplishment of more and more sophisticated tasks. Most of

these tasks are traditionally performed manually by a professional audio engineer

using an expert audio editing software and often require a large amount of time.

Automatic or at least semi-automatic solutions for these tasks would not only save

time, but also potentially allow less experienced users to perform them.

Automatically adapting the length of a musical piece to a specific desired duration

2 1. Introduction

is one of these tasks and presents an active topic in research. A possible application

scenario is concerned with editing a music piece so that it has the same duration

as an existing video and can be used as musical accompaniment. Another relevant

scenario involves creating a short preview of a music piece for customers to listen

to before possibly committing to a purchase of the whole piece on a commercial

website. In video game design, dynamically adapting the duration of a music piece

would be useful – sometimes, the background music of a game level should last as

long as the player stays in this level, which could be for an arbitrarily long time that

is not known in advance.

Rearranging an existing piece of music by changing its high-level structure con-

stitutes another task that could also be combined with the previously mentioned

change of duration. A system capable of executing such a task would allow even

non-professional users to ”remix” an arbitrary music piece in a short amount of time.

For example, a typical Western pop song consisting of segments that each serve the

function of either a verse or a chorus could be converted into a song that only incor-

porates elements from the chorus segments. Additionally, the possibility of adjusting

the duration of these segments would make it possible to increase the length of the

verses while not making changes to the rest of the structure.

A whole range of additional requirements for the resulting track could arise in a

real-world setting, for example selecting which parts of an original piece have to

be used or not used for the rearranged piece. Excluding different parts from the

produced results would allow for the efficient creation of instrumental pieces from

tracks containing vocals. Another variant of this requirement would involve ”pro-

tecting” some parts, thereby either completely removing them from the result or

forcing them to be played without modification. Such a concept would be useful

when using music as an accompaniment for a film, because some parts of the audio

may need to stay synchronised with the video despite the rearrangement. These

parts could be marked as protected in order to prevent them from being modified.

Many more constraints for the produced result could be conceived, of which some

could be very useful for a range of different scenarios. However, implementing each

of these possibly contradicting constraints into a system requires a large amount of

time. In this thesis, we will therefore focus on a certain subset of all theoretically

possible constraints and implement them in a new system for music rearrangement.

The following section will outline the scope of the thesis, detailing the goal and the

aspects that received particular attention. It will also briefly summarise the results

achieved with the proposed system for music rearrangement.

1.2. Scope and results of the thesis 3

1.2. Scope and results of the thesis

This thesis aims to address the problem of automatically rearranging any given music

piece based on user-defined constraints, which is explicitly stated in section 3.1, by

proposing a novel music rearrangement system. We did not focus on synthesising

music from basic elements of sound, but instead on using certain pieces of the original

to assemble a new song in such way that it fulfils the given constraints. These

constraints include a target duration set by the user in order to specify the desired

length of the new music piece. We integrated algorithms capable of scaling the

duration of a music piece (creating the impression it is played in a faster or slower

tempo than in the original music piece) in order to produce music pieces that fulfil

this target duration very accurately, if desired by the user. Another important user

constraint supported by our music rearrangement system defines a requirement for

the structure of the generated output track.

Many of the recent methods for music rearrangement concatenate sections of the

original song to form the new track while trying to minimise the perceptibility of

the resulting transitions from one section to the next. Instead of restricting the

range of possible inputs to music tracks of a certain genre like dance music in the

approach from Wenger [42], the goal of this thesis was to develop a system suitable

for any music piece regardless of genre. Our music rearrangement system is based

on the already existing method from Wenner [48], but improves it in several areas.

With an extensive evaluation of Wenner’s method in section 2.4, we contributed a

detailed examination of the state of the art regarding music rearrangement, revealing

a range of different problems. Some of these problems were solved by our proposed

system, while others remain as guidance for the direction of possible future work.

The system uses algorithms to extract the positions of the beats, which represent

the underlying pulse of the track, and the structure of the original piece. Improving

these methods was not within the scope of this thesis, as they are subject to other

areas of research and implementations from the best available methods developed

by other authors can be integrated into the system.

In contrast, solving the frequent occurrence of irritating changes in loudness at the

transitions between two concatenated sections received particular attention. Our

solution tackles the problem from two different angles. At first, we aimed to avoid

concatenating sections exhibiting large loudness differences in order to prevent such

problematic transitions from emerging in the result. Secondly, in case no suitable

alternative transitions can be found or other transitions do not offer the same musical

quality concerning other aspects, these problematic transitions can also be processed

4 1. Introduction

with the loudness equalisation method from section 4.4.2 targeted at smoothing the

loudness change so it does not occur instantly, but over a time frame of up to a few

seconds.

To find the optimal arrangement of sections of the original piece fulfilling the user

constraints, an algorithm based on dynamic programming is employed by Wen-

ner [48] with an asymptotic runtime complexity that is quadratically dependent

on the length of the input track as well as linearly dependent on the duration of the

output track. Consequently, rearranging longer tracks often leaves the user wait-

ing for more than ten seconds to see the assembled result. A typical workflow is

comprised of repeatedly changing the user constraints and listening to the result

after each change in order to receive the best possible music piece. As a result, such

long waiting times are severely detrimental to the user’s productivity and the inter-

activity of the interaction with the system. In an effort to reduce these runtimes,

we adapted the well-known A* algorithm [20] to the problem of finding an optimal

arrangement of excerpts of the original piece in section 4.3.5 and also developed

specific heuristics intended to provide an additional speed-up.

Because rhythm is a very important aspect of music and concatenating two sections

of a music piece can result in rhythmical discontinuities, an approach to synchro-

nise both excerpts to their common underlying rhythmical pulse is presented in

section 4.4.1.

An important change to how a specific structure is enforced on the result was made

to the original method from Wenner [48]. The approach in this thesis presented in

section 4.3.6 is configurable by the user through tolerance parameters controlling

how strictly the structure is enforced. Our algorithm trades the accurate fulfilment

of the structural constraint for a potentially better sounding result. It allows a

certain deviation of the resulting structure from the desired one, but in return also

extends the space of possible solutions for assembling the piece, which often contains

a significantly better solution with transitions that are rated as less perceptible.

The developed components of the music rearrangement system are evaluated in sec-

tion 5, either by automatically executing a large number of rearrangements and

analysing relevant metrics or with a listening study, where excerpts of the produced

music tracks are rated by participants. Comparing the performance of the proposed

variant of the A* algorithm designed to find the optimal arrangement to the per-

formance of the dynamic programming approach from Wenner [48], we conclude

that our algorithm outperformed the dynamic programming approach with regards

to the average runtime in almost all cases. Using input tracks with durations of

1.2. Scope and results of the thesis 5

under three minutes presented the only exception, where the dynamic programming

approach was slightly faster on average, but this difference is negligible for the user

as both algorithms typically required less than one second. On the other hand, our

modified A* algorithm scaled better with the duration of both the input and the

output tracks, completing its computation significantly earlier than the dynamic

approach especially for long input tracks lasting seven minutes and more.

The method proposed for enforcing a specific structure on the result with tolerances

introduced in section 4.3.6 also proved to be a success – it lead to the selection of bet-

ter solutions involving transitions estimated as less perceptible, while the structure

of the produced results deviated only slightly from the desired structure defined by

the user. Under the assumption that the measures used for estimating the transition

quality accurately reflect the perception of the listener, increasing the segmentation

tolerances consequently leads to better sounding output tracks.

In the conducted listening study, the participants were asked to rate audio snippets

containing transitions from one section of the original piece to another regarding

their loudness continuity, that is, how smooth the loudness changes over time and

if any irritating loudness changes occur. These ratings significantly correlate with

the estimations of the transition quality regarding loudness provided by our mu-

sic rearrangement system, as shown in section 5.2.1. This correlation demonstrates

that transitions lacking in loudness continuity can often be automatically identified

and subsequently avoided when searching for the optimal solution. Additionally,

section 5.2.2 confirms the ability of the proposed loudness equalisation method to

improve the quality of the transitions on average. On the other hand, the syn-

chronisation method also devised with the intention of improving an aspect of the

transition quality, namely rhythm, did not have a consistently positive effect when

applied to the audio excerpts. This is shown by statistically analysing the average

ratings of the participants in section 5.2.2.

The user interface of our system shown in section 4.6 represents another contribution

to the field of music rearrangement. It enables the user to rearrange the original

music piece in a very intuitive manner, as most constraints can be efficiently en-

tered using only a mouse without the need of typing in complicated sequences of

commands.

In the following section, we will outline the structure of this thesis by summarising all

of the upcoming sections. Some of these introduce system components that were not

yet discussed in this section, but were also targeted at improving the performance

of the music rearrangement system.

6 1. Introduction

1.3. Structure of the thesis

At first, we will lay the foundations required for this thesis in section 2, beginning

with the relevant aspects of music theory in section 2.1. Afterwards, we will present

the current state of the art in the field of music rearrangement in section 2.2 and

review the currently existing approaches. Following the decision to base our method

on one of these approaches, we will extensively evaluate the selected approach with a

preliminary study presented in section 2.3 to ascertain possible areas of improvement,

which will be explored in the subsequent section 2.4.

Before discussing details of the proposed music rearrangement system, we will pro-

vide an overview in section 3, comprised of a more formal description of music

arrangement as a problem in section 3.1 and an introduction to our system designed

to solve this problem in section 3.2.

Because the system components are only briefly explained in section 3.2, the follow-

ing section 4 describes them more thoroughly. Each of the subsections is dedicated

to one system component and their order corresponds to the position of the respec-

tive component in the system’s processing pipeline. The first part of this pipeline

constitutes a beat tracking system presented in section 4.1 to detect the locations of

beats in the original music piece. Afterwards, the preprocessing stage described in

section 4.2 involves extracting musical information based on the previously detected

beats and has to be performed only once for an input track. Using this information,

the path optimisation stage described in section 4.3 computes the optimal solution

from all available solutions that fulfil the user-defined constraints. This optimal

solution is equivalent to a description of how the output track should be assembled,

that is, which sections from the original piece are used and in which order. In the

jump optimisation stage introduced in section 4.4, this description is refined and

certain audio processing steps are performed on the output signal, both in order

to achieve a higher transition quality. If desired by the user, the final output sig-

nal is scaled so it has exactly the desired duration in section 4.5. Interaction with

the music rearrangement system is made possible by the user interface presented in

section 4.6.

Subsequent to the explanation of the proposed music rearrangement system in sec-

tion 4, its evaluation will take place in section 5. Its goal was to test whether the

implementations of all major components actually provide the intended improve-

ments and it employed both an automatic evaluation procedure in section 5.1 and

a listening study in section 5.2.

Finally, we will draw conclusions from our work in section 6, summarising the capa-

1.3. Structure of the thesis 7

bilities, but also the limitations of our system and possible approaches for improve-

ment as part of future work.

The appendix A provides an overview of the parameters introduced throughout

the thesis and also describes the databases containing music pieces that were used

for evaluation purposes. Additionally, it features details of experimental results

obtained during the evaluation.

Important concepts occurring on multiple occasions throughout this thesis will be

introduced with their names written in bold. They are defined as precisely as

possible and are generally included in the index as a means of reference. Other

concepts from external sources not explicitly defined in this thesis will be written

in italic and feature references to the exact definitions, if necessary. Italics will also

be used for mentioning concepts that are not yet explicitly defined, but will be at a

later point.

2. Background and related work

This section will present the knowledge required for understanding the proposed mu-

sic rearrangement system in section 4. At first, the relevant aspects and definitions

related to music theory will be presented in section 2.1. Afterwards, section 2.2 will

give an overview of the existing approaches to rearranging music that leverage some

of these aspects. We will select one of these approaches as a starting point for our

own system in section 2.3 and describe a preliminary study conducted to extensively

evaluate it. Finally, the results of this preliminary study uncovering different areas

of improvement are presented in section 2.4.

2.1. Music theory

In order to understand the currently existing approaches outlined in section 2.2

and the method developed in this thesis, some concepts from music theory will be

presented in this section providing the basis on which these methods work on.

Musical structure In Western popular music, a song can be structurally divided

into a number of modules [31]. These modules are categorised according to the

function they fulfil as follows. A verse module primarily features a unique lyric

content, while chorus modules often contain the same lyrics and exhibit a higher

musical intensity relative to the verse modules. Bridge modules on the other hand

present a contrast to these modules and serve as a transition from one module to

another, making the listener anticipate the following module. The overall structure

then emerges from the temporal arrangement of the different modules. For example,

a common arrangement found in modern pop music is to use a verse and a chorus

twice in this order, followed by a bridge module that lets the listener anticipate the

final chorus module.

In classical music, musical structure is a much more complex phenomenon [4] and

will not be explored in greater detail. In this thesis, it is sufficient that the concept

of different musical parts with specific functions occurring in some order, which was

10 2. Background and related work

applied to Western pop music above, can also be used to describe classical music on

a general level.

The more technical term segmentation is defined as a description or annotation of

the musical structure present in a song and represents a core concept in this thesis.

It consists of a sequence of segments, corresponding to the notion of modules, each

with a point in time where the segment begins (when it ends, the next segment

begins). A segment transition from one segment to the next is the point in time

where the first segment ends and the next one begins. Furthermore, every segment

is assigned to a cluster in such a way that all segments serving the same function

(for example, all verse modules) belong to the same cluster. This simplified concept

of musical structure can be applied to a wide range of musical genres and is still

powerful enough to provide many opportunities for rearranging music, of which some

are mentioned in section 1.1.

Tempo and rhythm Music is a time-dependant phenomenon, where the time is

often divided into short periods of the same length, indicated by audible pulses

called beats, allowing musicians to synchronise their play [38]. The tempo of a

piece is described by the amount of beats per minute (bpm). Musical events like the

beginning of a note or a snare drum hit tend to occur together at beat positions,

but they are also allowed to take place in between the beats. Depending on some

characteristics of these events, e.g. how loud or how powerful they are perceived,

the corresponding beats can be categorised into strong beats and weak beats.

A pattern of strong and weak beats is called meter and very often repeats itself

throughout Western music pieces, so beats can be subdivided into groups called

measures, where one measure contains a number of those repetitions. In pop

music for example, a meter with a strong beat followed by a weak beat is common

along with measures containing four repetitions of this meter, resulting in a measure

consisting of four strong and four weak beats. Although tapping to the beat usually

occurs along the strong beats of a measure, it can also be performed on other metric

levels by including the weak beats in between the strong beats or skipping a constant

number of strong beats after every tap.

Time signatures are noted down as a fraction describing in the numerator how

many beats fit into measure and in the denominator what type of note gets a beat,

e.g. a 3
4

time signature contains three beats per measure where each beat is fully

occupied by a quarter note. Western music and in particular Western pop music

very often uses a 4
4

time signature.

2.1. Music theory 11

Instrumentation Music employs a wide variety of different instruments to produce

musical tones. These tones can vary in their pitch. We conceptualise pitches as

”distinct sonic entities”and ”we mentally represent them as a series of points occupy-

ing higher or lower, intervallically defined positions on an imaginary, quasi-spatial,

vertically aligned two-dimensional continuum” [5]. Every instrument has a specific

range of pitches it is capable of producing – while a flute covers high-pitched notes,

a bass guitar does not, but can instead generate very low-pitched notes.

Even if two different instruments cover a similar range of pitches, an experienced

musician can distinguish the sound of both instruments even when they play the

exact same note due to a psychoacoustical effect named timbre [5], often described

as the quality of a tone. Timbre emerges in part from the presence of additional

frequencies (harmonics) in the sound whose distribution varies depending on the

instrument used.

Loudness A note that is played can not only vary in pitch and in timbre, but also

in loudness that can be defined as follows: ”When a sound or noise of any quality or

structure impinges upon the human ear, the magnitude of the resultant sensation is

termed the loudness.” [30] Therefore, loudness is a psychoacoustical unit and should

not be confused with the term sound pressure as an objective, physical measure

of sound strength. Although loudness primarily depends on the sound pressure,

it is also influenced by the frequencies the sound is composed of. Equal-loudness

contours demonstrate how the loudness of a tone with a specific, constant sound

pressure varies depending on its frequency [21].

Loudness plays a very important role in music. A slow increase in loudness creates

excitement, anticipation or tension, while a slow decrease can indicate the end of a

musical idea or a whole song. Differences in loudness like a high loudness in chorus

modules and a low loudness in verse modules can help to structure the musical piece

by emphasising specific parts.

Consequently, the loudness changes in a music piece are often expected by the user

or occur over a longer period of time so they are not irritating to the listener. We

introduce the concept of loudness continuity for this case and this continuity is

violated whenever a sudden, unexpected change in loudness occurs while listening

to a song. This happens particularly often in the area of digital music editing, when

parts of a song with different loudness are cut together without an appropriate

transition.

12 2. Background and related work

2.2. Existing approaches

Several approaches have been proposed to automatically change or rearrange a music

piece according to a given set of user constraints. Because automatically rearranging

music is still a relatively new research topic, there is a limited amount of related

work available. We will present an overview of this related work in this section.

When only a change in duration of a music piece is required, then this can in principle

be achieved very simply by adjusting the playback rate, simultaneously causing an

undesired change in pitch. Timescale-pitch modifications like WSOLA [43] can be

employed to change tempo and pitch independently, so the scaling of duration can

be performed without changing the pitch. Although yielding good results for small

duration changes, higher scaling factors not only produce sound artefacts, but also

alienate the original piece, drastically changing the listening experience to the point

where the result has little resemblance with the original. Additionally, one would

like to influence the segmentation of the produced result in some way, for example

to create ”remixes”, which is not supported by this approach.

While the application of rearrangement methods found in computer graphics dealing

with multi-dimensional data like pictures to music as a one-dimensional signal is

theoretically possible, it turned out to not work well in practice [48]. Treating the

music piece as a sound texture analogous to graphical textures and applying for

example tiling and stitching produces good results for ambient noises like wind and

rain, but fails for structured music, often repeating the same short section [33].

Seam-carving [2] is another popular approach often used to intelligently retarget

images and works by finding and expanding regions of low interest to the viewer and

is theoretically also applicable to music. To find the correct points in time to expand

or contract the signal a saliency measure is needed, but for music these measures

are not robust enough yet [48].

Consequently, research in the last few years focused on another, more promising ap-

proach based on concatenating parts of the musical piece in question while minimis-

ing the perceptibility of cuts between the sequentially arranged parts by searching

for sections with a similar hearing impression. Using an equivalent description from

another point of view, this type of approach plays back the original and occasionally

”jumps” from the current point in time to another.

Researchers at TU Braunschweig incrementally built upon such a retargeting ap-

proach [46], developing a genetic algorithm [47] and reducing the search space for

cut positions to whole measures as identified by a beat tracker [42]. While yield-

ing good results for dance music often exhibiting a strong, regular beat, it does

2.3. Preliminary study 13

not necessarily generalise well when applied across many different genres of which

some feature changes in tempo, loudness and other musical properties. Furthermore,

when entering the desired segmentation of the result, the user is not assisted by an

automatic segmentation method and instead has to build it from the ground up on

a measure-by-measure basis.

Such an automatic segmentation is instead employed by S. Wenner [48], whose work

is similar, but not only targeted at dance music and also contains a wide range of

additional features useful for different video editing tasks as well as singing removal

or creation of infinite music. Because it uses ”bixels” (a contraction of the words

beat and pixel), the musical content between two consecutive beats, for self-similarity

calculation and not whole measures, cuts from one count of a measure to a different

count can occur. These cuts lead to a measure with an unusual number of beats

that sounds rhythmically irritating.

With a user-defined segmentation both approaches suffer from a significantly reduced

quality of cuts, as many potentially less perceptible cuts do not lead to a solution

satisfying the segmentation constraints.

In summary, the previously proposed methods lack the musical understanding in

one or several areas in order to always be able to successfully generate a music piece

of high quality. Methods based on synthesis largely fail for structured music and are

not able to authentically reproduce the musical style and sounds of different artists,

while methods based on concatenating sections of the original piece sometimes suffer

from the suboptimal selection of cut positions and from the lack of suitable cut

positions in case a music piece progressively changes and does not repeat itself.

2.3. Preliminary study

The two ”jump-based” approaches outlined in the previous section 2.2 presented the

most promising basis for our own algorithm. Although the method from Wenger [46]

often provides high quality outputs for dance music, the goal of this thesis is to

build an all-purpose music rearrangement system without such a genre restriction.

In contrast, the algorithm developed by S. Wenner [48] appeared to fit better to

the scope of this thesis and was therefore selected as a reference method. In a

preliminary study to investigate possible areas of improvement, we reimplemented

and intensively evaluated Wenner’s method with a self-built database called ”CC1”

(see appendix A.3). It contains 42 Creative Commons songs sourced from the ”Free

Music Archive” [49]. The genre and in some cases the subgenre for every song was

14 2. Background and related work

provided in addition to the audio file and allowed for a selection covering a wide

range of different genres. Because the output quality of the method depends on

the accuracy of the employed beat tracking system, ground truth data for the beat

positions was created for every song by ”tapping” to the beat while listening to it in

order to eliminate incorrectly detected beats as the cause for suboptimal results.

Every experiment was conducted with the automatically detected beats by the beat

tracker from Davis [9] (see section 4.1) and with the ground truth beat data as input.

To cover both shortening and lengthening the original piece, all songs were retargeted

to 60 and 600 seconds with varying amounts of seconds as tolerance, meaning the

resulting length could deviate from the target duration more or less. This leads to

the set of configurations listed in table A.8, where the ”Setting” column describes

the target duration, the tolerance in seconds and whether the ground truth (GT)

beat data was used. The resulting cuts in the output were graded with regards to

different musical aspects using marks from one (low quality) to ten (high quality).

Marks for the tonal quality (T) can be found in the first column, focusing on how

continuous the instrumentation sounds at the cut. The second column deals with

the rhythmical continuity (R), demanding that the beats are evenly spaced across

time so the listener is able to intuitively tap to the beat without issues. A correct

preservation of measures (M) is the concern of the third column, penalising ”broken

measures” containing fewer or more beats than normally expected. In the fourth

column, a compositional aspect (C) describes how well the piece summarizes or

respectively extends its original and makes deductions for frequent re-occurrences of

the same segment. Additional remarks about the jump quality are listed in the last

column.

In the following section, the results of this preliminary study are discussed.

2.4. Issues of the selected approach

The results of the preliminary study of Wenner’s method in the previous section 2.3

revealed a number of unknown problems (even when using the ground truth beat

positions), which will be listed along with problems already mentioned by the au-

thor [48]. We will reference the sections in this thesis dealing with some of these

problems, while others will remain for potential future work discussed in section 6

due to the time constraints in the context of this thesis.

2.4. Issues of the selected approach 15

Frequent repetition of short sections When extending music to 600 seconds,

sometimes the algorithm generates a solution that contains the same short excerpt

of the original song many times in direct succession. Although this often produces

imperceptible cuts, a lot of repetitions are detrimental to a pleasing experience for

the listener. In addition, a large part of the original is not used in the end result, so it

does not ”summarise” the original piece very well. As seen in table A.8 and heard in

audio example 2.1, extending the song ”Barbarian” from ”Pierlo” for example caused

many repetitions of the same short section. How to penalise the jumps responsible

Audio 2.1.: Audio excerpt of ”Barbarian” from ”Pierlo” that was re-
peated over 40 times after extending it to 600 seconds
during evaluation.

for this effect so that jumps not producing this problem are used instead is discussed

in section 4.3.4.

Bixel-based segmentation enforcement The implementation of structure-aware

retargeting in the original work [48], where the currently desired segment is enforced

on a bixel-by-bixel basis, severely restricts the space of solutions, because there is

a fixed position in the path at which the cluster of the current segment has to

change. Although this results in pieces with segmentations that match the desired

segmentation with a high precision of up to a bixel’s length, the cuts tend to sound

significantly worse than without the segmentation constraint. In section 4.3.6, we

propose a method to enforce a segmentation with a user-defined level of tolerance,

so that slight deviations of the resulting segmentation from the desired segmentation

are allowed and also exploited, if they lead to a result of higher quality.

Disregard for time signatures As already mentioned in section 2.2, the algorithm

does not always respect the measure, resulting in a different amount of beats in the

measure containing the cut. This issue is especially noticeable with music genres

featuring a constant time signature and a clear indication of the current position in

the measure, e.g. pop music. Taking the standard 4
4

time signature found in most

Western music as an example, jumps leading to measures with an uneven number of

beats like seven are particularly jarring, whereas extending the measure by two beats

is less striking. ”Gonna Make It Through This Year” from ”Great Lake Swimmers”

from the database CC1 listed in table A.8 also features this time signature and is

a good example for this type of problem. An excerpt of the result of retargeting

media resource

Blues

4.571438

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

16 2. Background and related work

the song to 60 seconds in audio example 2.2 demonstrates a disregard for the time

signature despite an almost perfect rhythmical aspect. Although tapping along to

the result works fine, counting the beats according to a 4
4

time signature does not end

with a count of one for the final beat, as one would expect. A potential solution

Audio 2.2.: Excerpt of ”Gonna Make It Through This Year” after re-
targeting to 60 seconds using the ground truth beats. The
normal rule of four beats per measure is broken at the end
by finishing the piece not on the first, but on what would
normally be the second beat of the measure.

involves detecting the time signature of the piece and avoiding jumps between beats

with different respective positions in their measures.

Ignorance of melody Melody represents another important part of music and

plays in an important role when searching for self-similarity, as it often contains

repetitions of the same melodic elements. Currently, the measure used for computing

the similarity of two bixels is computed with a feature describing the timbre (see

section 4.2.1 for more details), but melody is not taken into account. Although

not many jumps produced irritating changes in melody, additional features could be

added to further increase the robustness of the similarity measure and thus overall

jump quality.

Cutting off vocals Another issue noted by both Wenger [42] and Wenner [48],

which also occurred for every experiment annotated with ”Vocals” in table A.8,

concerns tracks with vocals. Audio example 2.3 demonstrates this problem with the

song ”Amazing Grace” when shortening it to 60 seconds with a tolerance of three

seconds. Because humans are especially sensitive to the human voice, jumping

Audio 2.3.: Beginning of the short version of ”Amazing Grace” with
three seconds tolerance. Just as the male singer begins
with his verse, the jump to a choral part interrupts it.

from or to a point in time where vocals are present produces an imperceptible

cut only in rare cases. Even when the jump successfully transitions between two

identically sung notes, it sometimes combines the beginning of a verse with the end

of another, alienating the original lyrics and producing meaningless sentences. The

original work by Wenner provided a work-around by manually marking the parts

Blues

17.39748

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Blues

14.732991

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

2.4. Issues of the selected approach 17

with vocals and forcing the algorithm to use them without any modification or not

at all, but an automatic solution that first detects the presence of vocals and then

avoids jumps occurring mid-sentence would be significantly less time-consuming.

Changes in tempo Although the database CC1 contains mostly music with a

constant tempo, there are also a few songs with either sudden tempo changes or with

gradually changing tempo like the punk song ”Dead Elements” from ”Angstbreaker”,

of which an excerpt is presented in audio example 2.4. Additionally, some

Audio 2.4.: Excerpt of ”Dead Elements” exhibiting a slight, gradual
tempo increase in the first part and a sudden tempo change
to a faster tempo at the beginning of the guitar solo.

pieces like ”Campaign Speech” from ”Convey” slow down when nearing the end.

The currently proposed methods assume a regular beat with an equal duration

occupied by every “basic building block“ for synthesis (whole measures in case of

Wenger, bixels in case of Wenner), leading to issues when tempo changes are present.

Unpredictable, very noticeable jumps from slow parts to fast parts and vice versa are

especially common for such input tracks and significantly degrade the output quality.

Taking the tempo difference between the segments to be concatenated into account

when considering which jumps to include in the result could be a solution. Moreover,

if such a jump is used despite this adjustment, a timescale-pitch modification with a

varying tempo parameter may be used around the resulting cut position to smoothen

the sudden tempo change or fully correct smaller tempo differences.

Inaccuracies caused by differently sized bixels Different distances between neigh-

bouring beats also call for a modification of the mentioned state-of-the-art algorithms

as they implement most of their functions on a measure-by-measure or bixel-by-bixel

basis, including the implementation of segmentation constraints. The length of a

music piece containing a specific number of such building blocks can vary depending

on which blocks are selected from the original, especially when tempo changes lead

to building blocks of very different length. Consequently, algorithms enforcing a

change in segment clusters after a specified number of blocks can produce results

with transition times that deviate from the user-specification. This is solved as our

implementation of segmentation enforcement in section 4.3.6 dynamically computes

the current length of the considered solution and determines which segment cluster

should be enforced at the moment based on this information.

Dead Elements

Angstbreaker

Demo (2013), track 2

2013-07-15T13:08:28

Punk

24.659687

URL: http://freemusicarchive

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

18 2. Background and related work

Additionally, the number of building blocks required for an output with a certain

length can only be estimated. Instead of computing the optimal solution only for

the best estimate like in Wenner [48] and risking a deviation of the resulting music

piece from the target duration, we determine a possible range for the number of

building blocks that is likely to be sufficient to produce a solution with the desired

duration in section 4.3.2.

Changes in loudness A problem often encountered in the retargeted results per-

tains to cuts connecting music excerpts differing in loudness. Investigating the cause

revealed the very low cost of including those jumps into the solution, leading to many

solutions with irritating loudness changes at the cuts. Such cases are annotated in

the comments section of table A.8 and one of them is demonstrated in audio exam-

ple 2.5. We tackle this problem from two different angles as follows. A separate

Audio 2.5.: Increasing the duration of ”Simple”from ”Orbique”without
tolerance leads to a sudden decrease in loudness.

feature for loudness is extracted in section 4.2.2 and combined in section 4.3.3 with

the original timbre-related feature to also take the loudness differences induced by

jumps into account, so that jumps producing an irritating change in loudness are

avoided. The other approach outlined in section 4.4.2 does not avoid these prob-

lematic jumps in the first place, but modifies the signal itself around the resulting

cut in such a way that sudden loudness changes instead occur over a longer period

of time to improve the hearing impression.

Sound artefacts due to inaccurate beat positions Even though beat tracking

itself is not the focus of attention in this thesis, sometimes small timing inaccuracies

in the returned beat positions lead to sound artefacts at jump positions in spite of

an almost perfectly tracked beat. Audio example 2.6 demonstrates this issue and

features two hi-hat sounds occurring in rapid succession, although only one should

be present. The original algorithm already tries to find the most optimal alignment

Audio 2.6.: Retargeting ”Stormy Blues” from ”Arne Bang Huseby” to
600 seconds without tolerance leads to a subtle sound arte-
fact: Experienced listeners may notice the moment where
two hi-hat sounds occur almost simultaneously.

of the source and target signal by positioning one signal up to 0.02 seconds earlier

Blues

15.046456

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

Blues

7.3926744

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

2.4. Issues of the selected approach 19

or later and computing the sum of squared differences, but fails for timing errors

larger than these 0.02 seconds. Therefore, a more general solution is developed in

section 4.4.1 to find the best cut position given the jump times, addressing timing

inaccuracies around the cut position.

Shifts of sounds in the stereo field A few songs like ”Blackroad” from ”Tryannic

Toy” in audio example 2.7 made heavy use of stereo effects, for example changing the

perceived location of a guitar in the stereo field during the song. However, analysis

Audio 2.7.: Excerpt of ”Blackroad”after extension to 600 seconds with-
out tolerance. At first, one guitar on the left and on the
right side can be heard. Then the song transitions to a
single guitar located in the center of the stereo field. Near
the end, a jump suddenly cuts this guitar off and instead
the two guitars on both sides return.

is performed after converting the input signal to mono and is therefore unaware of

any stereo effects, leading to jumps with sudden changes in the perceived sound

location of some instruments. For instance, cuts from a guitar heard on the right

ear to a guitar on the left ear or a guitar heard from both sides to a guitar heard

“inside one’s head“ can be noticed with a good stereo loudspeaker setup and occur

in the song ”Blackroad”. One approach to alleviate this problem could consist of

computing the similarity between different bixels for every channel separately and

then combining the resulting measures into one.

Overall, the preliminary study revealed a range of different issues and consequently

many areas of improvement.

In the next section 3, we will state the problem of rearranging music more thoroughly

and present an overview of a system proposed to solve this problem, while tackling

some of the issues mentioned above.

Blues

6.63512

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

3. Overview

This section will describe the problem of music rearrangement in detail and will

introduce a system proposed to solve this problem. Beginning with the following

section 3.1, music rearrangement will be formulated as a problem by describing the

required and optional inputs along with the desired output. Afterwards, section 3.2

will present an overview of the music rearrangement system we propose to solve this

problem.

3.1. Problem statement

Because music rearrangement is a very broad term, we will introduce a more detailed

definition of music rearrangement as a problem in the context of this thesis.

First and foremost, music rearrangement always requires an already existing piece

of music as one part of the input. The overall goal is to assemble a new music piece

from this input track that fulfils a set of user-defined constraints, which represent

the other part of the input.

Principle of assembly We restrict the range of possibilities for solving the music

rearrangement problem as follows. The output track should generally not be syn-

thesised independently from the input music, but rather contain a series of different

sections of the input track to sound as similar to the original song as possible, while

still fulfilling the user constraints presented later in this section. However, we also

allow for the subsequent processing of a signal constructed in such a manner to

further increase its quality.

Consequently, a solution generated by this approach of concatenation is approxi-

mately equivalent to playing the original song, but with a list of jumps each with

a jump origin indicating the time at which to change the current play position in

the original song and with a jump destination defining the position in the original

song to which the playback position is changed. A jump whose origin is located

before its destination in the original song is called a forward jump and decreases

22 3. Overview

the duration of the output, while a backward jump features a destination located

before the origin and increases the duration of the final piece. Both types of jumps

change the duration by the amount of time between jump origin and destination,

which is our definition for the term jump distance. The resulting song conse-

quently contains a cut for every jump at which the music signal before the jump

origin and the signal after the jump destination is joined together.

User constraints Besides the input track, a set of user constraints serve as input

when considering the problem of music rearrangement. They pose a restriction to

the space of possible outputs and enable the user to design the new music piece to

their liking. In the following, we will list a portion of all possible constraints.

The target duration constraint is mandatory as input and defines the desired

duration along with a minimum and maximum duration the new music piece is

allowed to have. Additionally, two parameters define the time points in seconds

in the original track at which the output track should start and end, respectively.

In the context of the assembly procedure mentioned previously, these start and

end positions determine where the playback initially starts and where it ends after

performing all jumps.

Optionally, the user should also be able to define the structure of the output, that

is, where different parts of the original song are allowed to occur and for how long.

When using this constraint, it is necessary for the user to first define a ground

truth segmentation of the input track by annotating its structure. For example,

a typical pop song could be divided into segments each belonging to either the

verse or the chorus module. Afterwards, the desired segmentation, called target

segmentation, is designed by the user. For every point in time, it enforces the

usage of audio material from segments that are assigned to a particular cluster in

the ground truth segmentation. Following our example regarding a typical pop

song, the user would be able to enforce an output containing audio material from

the chorus segments in the first thirty seconds and from the verse segments for the

remainder of the output track.

Additionally, the optional importance constraint allows the user to specify which

parts of the input track should be included in the output. More specifically, a degree

of importance is defined for every time point in the original song, incentivising the

use of some parts of the input track over others.

In principle, the set of user constraints can be extended with many more, mostly

optional, constraints to increase the level of control the user has over the output

3.2. System overview 23

track. The proposed system introduced in section 3.2 implements a number of such

constraints in addition to the previously mentioned constraints. These implemented

user constraints are listed in table A.1 and will be explained in greater detail in the

respective subsections of section 4.

In summary, a system for music rearrangement has to produce a new track using

sections of the original piece so that the resulting cuts are as imperceptible to the

listener as possible, while fulfilling the user-defined constraints.

3.2. System overview

The music rearrangement system proposed in this thesis is partly based on the

approach from Wenner [48] selected in section 2.4, building on some of its core ideas

while modifying and extending it to remedy its shortcomings.

One of these core ideas, which also plays a central role in this thesis, is the concept

of a bixel. It is defined as the musical content located between two consecutive

beats. As a result, every song can be divided into a sequence of bixels according to

its beat positions. We use bixels as the building blocks of our music rearrangement

system after identifying the positions of the beats, that is, the output is in principle

assembled by concatenating a series of bixels. In other words, the (infinitely large)

set of possible jumps that is considered for a solution is restricted to jumps whose

origins and destinations each align with one of the detected beat positions.

In the remainder of this section, we will provide an overview of the proposed music

rearrangement system, which can be represented as a processing pipeline, by briefly

going over all the stages in this pipeline.

The implementation of the system employs a combination of C++ and MAT-

LAB [25] as programming languages. C++ was selected due to its efficiency and con-

trollability of low-level operations vital for quickly solving the optimisation problem

in section 4.3, while MATLAB enables a fast creation of prototypes using statistical

and audio processing tools.

The system allows for a wide range of user-defined constraints for the resulting music

piece such as duration, segmentation and the usage of specific parts of the original

according to an importance function. In addition, results with potentially annoying

repetitions or cuts with a sudden change in loudness can be avoided with respective

parameters. Other features include a fast path optimisation algorithm to find the

optimal solution fulfilling the user constraints, a loudness equalisation method de-

signed to restore loudness continuity at cuts and the employment of timescale-pitch

24 3. Overview

modification algorithms for results that fulfil the target duration very accurately.

The general structure of the proposed system is shown in figure 3.1. On an abstract

level, it is comprised of two different phases explained in the following. The analysis

phase is concerned with extracting relevant features from the input song that are

used in the subsequent synthesis phase to generate a new music piece according

to user-defined constraints. The analysis has to be done only once for every input

track, while the synthesis is performed on this constant set of data whenever the

user changes the constraints, allowing for an interactive rearrangement due to the

synthesis phase being completed in a few seconds in most cases (see section 5.1.2 for

details on runtimes).

After providing the original music piece, the analysis begins by identifying the loca-

tions of the beats with a beat tracking system detailed in section 4.1. Alternatively,

the beat data can be manually imported from a user-defined external source in the

form of a file containing the beat positions with comma-separated values.

The beat positions obtained from the previous stage are then used along with the

music piece in the preprocessing stage presented in section 4.2 for the extraction

of musical features describing the timbre and the loudness of every bixel. To assist

the user in defining a ground truth segmentation for the original piece, an automatic

segmentation is performed according to the method in section 4.2.3. The computed

segmentation can be either recalculated with different parameters or manually re-

fined and serves to assign every bixel to a cluster to facilitate the segmentation

enforcement in section 4.3.6. For every music piece, the aforementioned analysis

steps have to be done only once and the output can be used to rearrange the piece

as often as desired, as it does not depend on the user constraints (except for the

ground truth segmentation which is treated as constant after user confirmation).

After confirming the ground truth segmentation, the system enters the synthesis

phase that is executed whenever the user decides to generate a new music piece with

the current constraints. At first, the path optimisation presented in section 4.3

searches a path through the original piece leading to an optimal solution with the

least cost, where costs for including different jumps in the solution are contained in

the unified cost matrix defined in section 4.3.3. This matrix takes into account the

penalties imposed by several user constraints and is afterwards extended to include

penalties for annoying repetitions in section 4.3.4. The path optimisation process

itself is accelerated with a multiple goal A* algorithm introduced in section 4.3.5.

In order to support rearrangement with a user-defined target segmentation, sec-

tion 4.3.6 presents a method that modifies the costs for jumps dynamically during

3.2. System overview 25

2. Synthesis

1. Analysis

Output
track

Optional: External beat data

User constraints

Loudness
Equalisation

Assembly with
CrossfadingOptimised

jumps
Loudness
change

functions

Path
Optimisation

Jump
SynchronisationOptimal

path

Beat Tracking Preprocessing
Beats

Features, Ground truth segmentation

Input
track

Figure 3.1.: Overview of the proposed music restructuring system.

path optimisation so that the result approximately fulfils the target segmentation.

The optimal path output returned by the path optimisation stage consists of jumps

from one point of time to another in the original signal that often need to be postpro-

cessed to achieve high transition qualities. Therefore, a series of stages concerning

the optimisation of these jumps follows, starting with the jump synchronisation

that aligns every jump origin and destination as described in section 4.4.1 to account

for potential inaccuracies of the detected beat positions. To improve loudness conti-

nuity at the resulting cuts, the loudness equalisation stage in section 4.4.2 builds

a model describing how to amplify or attenuate the audio signal around the jump

origin and destination of every jump, before both of the corresponding excerpts are

crossfaded in the final assembly with crossfading presented in section 4.4.3 to

eliminate sound artefacts. After assembling the new music piece from the input track

according to the given jump positions and the optimised audio material near the cut

positions, it is optionally exactly scaled to the target duration with a timescale-pitch

modification method from section 4.5.

With the exception of the final assembly stage, the input signal is always assumed to

be in a mono format (with an implied conversion to mono for multi-channel signals)

before any actions related to the signal are performed, unless otherwise noted.

In the following, the music rearrangement system will be explained in detail.

4. System components

The components of the proposed system for constraint-based rearrangement of music

will be presented in this section.

As already stated in the previous section 3.2, the system consists of several stages

arranged in a pipeline. The next sections will each explain a stage of the system in

greater detail and their order of occurrence corresponds to to their position in the

pipeline. For better comprehensibility, the explanations of the steps performed dur-

ing these stages will be supplemented with illustrations and audio examples gener-

ated with tracks from the database CC1 (see table A.3), where appropriate. Finally,

the user interface of the system will be presented in section 4.6.

4.1. Beat tracking system

Because our system relies on the concept of using sections of the original track to

assemble a new music piece, we need to divide the original music into a discrete

number of slices in a musically meaningful way so the transitions between the slices

sound as good as possible when concatenating them. A promising approach also used

by Wenner [48] is to use the beat positions as boundaries for these slices, producing

one bixel per pair of neighbouring beat positions.

Formally, beat tracking yields a vector bpos containing the N + 1 detected beat

positions in seconds, resulting in N bixels b1, b2, . . . , bN , where the i-th bixel bi

represents the musical content between bpos
i and bpos

i+1 seconds. The length of every

bixel can be described as an N -dimensional vector blen with blen
i = bpos

i+1 − b
pos
i .

Selection process Because beat tracking as a problem in itself is out of the scope

of this thesis, we assessed existing beat tracking systems and decided which one

to use based on their suitability for our application. A recent evaluation of beat

tracking systems can be found in [50], where four metrics indicating performance

with a percentage value are deployed. Two metrics CMLc and CMLt require the

correct metric level and two metrics AMLc and AMLt do not, where the suffix

28 4. System components

”c” in the name of the metric indicates the requirement of continuity. Considering

our application, the detected beats do not have to represent a specific metric level,

as long as they all share the same metric level or at least exhibit the same delay

compared to a metric level (for example detecting only the weak beats after the

strong beats), because such a delay does not significantly affect the output when

concatenating the bixels. Continuity decreases with the number of shifts between

metric levels occurring and thus should ideally be high to avoid pairs of bixels

containing differently sized portions of a measure. Consequently, the AMLc metric

led to the selection of the beat tracker from Davies [9], as it provides not only a

good performance, but also a freely available implementation [6] that can be easily

integrated into our system, because it is written in MATLAB.

An example of the beat tracking system applied to the song ”El barzón” from ”Los

Amparito” contained in our database CC1 can be heard in audio excerpt 4.1, where

beeping sounds in the song mark the positions of the detected beats. Note that

Audio 4.1.: Extract of the song ”El barzón” performed by ”Los Am-
parito” from database CC1 in table A.3 with beep sounds
at the detected beat positions

the detected beats are the weak beats exactly halfway between the strong beats

that one would usually tap to. Because over the whole song just the weak beats are

consistently detected, this does not present a problem - on the contrary, it provides

a good basis for the rest of the music rearrangement system, as the resulting bixels

represent the same time frame from a musical perspective.

Evaluation on database CC1 As mentioned in section 2.3, ground truth beat data

was created for the music database CC1 from table A.3 by manually tapping to the

beat when listening to the songs. Besides the AMLc metric, another especially useful

metric in the context of our application is the information gain metric [8]. Generally

speaking, it considers the relative beat errors for the detected beat positions and

summarises this error distribution using a histogram. Afterwards, the information

gain of this error distribution in comparison to a uniform distribution that equals

randomly selecting positions as beats is calculated. Consequently, the metric does

not significantly punish beat detections on another metric level or beats being de-

tected with a constant delay, making it a suitable indicator for how well the result

produced by a restructuring system based on bixels can at most turn out to be.

Table A.7 shows the beat tracking performance for every song in the database CC1

Blues

8.664

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

4.2. Preprocessing 29

with the metrics CMLc, CMLt, AMLc, AMLt and the information gain generated

with the ”Beat Tracking Evaluation Toolbox” [7] written in MATLAB. The standard

configuration of the toolbox was used, leading to information gain values that can

range between zero and about five.

For some songs like ”Lullaby”, the metrics CMLc and CMLt requiring the correct

metric level are zero, although AMLc and AMLt are almost at the maximum value

of 100. This is due to the the beat tracker detecting another metric level almost

perfectly. The excellent results of the Wenner method for this song in table A.8

prove that the correct detection of a specific metric level is indeed not an issue for a

bixel-based restructuring system, making the AMLc and AMLt metrics more useful

when choosing a beat tracker for such a system than the CMLc and CMLt metrics.

The detected beats for the song ”Stormy Blues” are rated with zeros for every metric

except the information gain metric, as they mark every second beat perfectly, but the

meter is based on a strong beat followed by two weak beats. However, this incorrect

meter does not greatly affect the output quality, as table A.8 shows, demonstrating

the suitability of the information gain metric for our purposes. In general, the results

of the preliminary study in table A.8 have to be analysed with the beat tracking

evaluation scores from table A.7 in mind.

Overall, the selected beat tracker performs acceptably well for most songs, reaching

an average information gain of 2.34, This is a good value considering that even an

almost perfectly tracked beat results in values around 3.5 due to minimal timing

inaccuracies, as the results for the track ”Barbarian” in table A.7 demonstrate.

While beat tracking as a problem of its own is neither the focus of this thesis nor

intended to be improved, the results can be used to discern whether music retargeting

has failed because of incorrect beat detection or because of some deficiency of the

proposed algorithm itself by comparing the results when using the beat tracker to

those produced with the manually generated ground truth beat data.

4.2. Preprocessing

The goal of the preprocessing stage is to extract musical information about the

input song and every one of its bixels in particular needed for the subsequent path

optimisation and thus requires the beat positions from the beat tracking system as

additional input.

More specifically, a measure is needed to estimate the perceptual quality of a bixel

transition, that is, selecting a bixel bj as a successor to some bixel bi so that bj will

30 4. System components

be played directly after bi in the result (we call bi the origin and bj the destination

of the bixel transition). This measure yields a bixel transition cost for every bixel

transition representing its sound quality, using low numbers for a high transition

quality and vice versa. Transitions from a bixel bi to its natural successor bi+1

mean the original signal can be used without alterations. All other bixel transitions

lead to a cut in the final output and are also called bixel jumps. Similar to the

definitions of jumps in section 2.2, we categorise bixel jumps from any bixel bi to

another non-successive bixel bj according to their direction. Forward bixel jumps

fulfil j > i+ 1 and backward bixel jumps require j < i+ 1. Note that under

this definition, the case j = i+ 1 can not occur for a bixel jump, but only for a

simple bixel transition that does not produce a cut in the result. The distance of

a bixel jump is defined as |j − (i+ 1)| bixels, while the bixel jump shift is equal

to j − (i+ 1) and takes the direction of the jump into account.

These bixel transition costs will be used in section 4.3 to determine the optimal

order of bixels to use for assembling the solution.

MATLAB along with the ”Signal Processing Toolbox” [26] and the ”MIR Tool-

box” [22], which was specifically designed for music information retrieval tasks, offers

a suitable environment for extracting information about the bixels in order to create

a measure for the bixel transition costs. A large portion of the functionality required

is already implemented and suboptimal runtimes due to MATLAB being an inter-

preted language are not problematic as the preprocessing stage has to be performed

only once for every music piece.

In the first section 4.2.1, the timbre of all bixels will be analysed to estimate the

transition quality regarding timbre when concatenating two bixels, while the second

section 4.2.2 aims to do the same for the loudness continuity concept introduced in

section 2.1.

Finally, an automatic segmentation method will be presented in section 4.2.3 to help

the user in creating the ground truth segmentation for the music piece that can later

be used in combination with a target segmentation to enforce the resulting song to

have a specific structure.

4.2.1. Transition costs regarding timbre

In this section, we will obtain a measure D′(i, j) for the transition quality regarding

timbre when selecting bixel bj as a successor of bixel bi in the result and represent it

as a N ×N matrix D′. We call such a square matrix containing the bixel transition

costs for all pairs of bixels a transition cost matrix.

4.2. Preprocessing 31

At first, a N ×N self-similarity matrix S is computed according to [48] that

describes the perceptual similarity of any bixel bi to any other bixel bj with a value

S(i, j) ∈ [0, 1] as follows. For every bixel, a 40-dimensional vector is extracted,

containing the first 40 mel-frequency cepstral coefficients (MFCCs) often used in

the context of speech recognition, which are ”the results of a cosine transform of

the real logarithm of the short-term energy spectrum expressed on a mel-frequency

scale” [52]. The resulting vectors describe the timbre of every bixel. In our imple-

mentation, this feature extraction is done with the MIR Toolbox [22] and executed

in parallel for every bixel by using the ”Parallel Computing Toolbox” [24] to speed

up the process.

Afterwards, the Spearman rank correlation is used to calculate the distance between

the feature vector of every bixel, yielding the self-similarity matrix S after normali-

sation to the range [0, 1].

An example is presented for the song ”El barzón” from ”Los Amparito” from the

database CC1 in figure 4.2 (a). The diagonal contains ones, because every bixel

is perfectly similar to itself. Orange and yellow areas in the form of squares reveal

groups of bixels which are similar to each other. Figure 4.2 (b) shows the lower right

part of the matrix S from figure 4.2 (a) in greater detail.

In order to extend this bixel-based notion of similarity to include temporally adjacent

bixels, consider the N ×N matrix S′ defined in [48]:

S ′i,j =
m∑

t=−m

wtSi+t,j+t. (4.1)

Like in [48], the values m = 2 and wt ∈ {w−m, . . . , wm} as the normalised binomial

coefficients are left unchanged, thereby taking into account how similar the m bixels

before and after bixel bi and bj are to each other. However, the authors do not

mention how to proceed near the edges of the matrix, where the formula refers

to non-existent entries in S with invalid indices. This is resolved when a more

refined formulation is used instead, which only sums up valid entries and divides

this weighted sum by the sum of all used weights:

S ′′i,j =

∑mend

t=mstart
wtSi+t,j+t∑mend

t=mstart
wt

with

mstart = max{−m, 1−min{i, j}} and

mend = min{m,N −max{i, j}}.

(4.2)

32 4. System components

This results in a matrix S′′, where bixels near the start and end of the song can still

exhibit just as high similarity values as other bixels and keeps the diagonal values

equal to one, which is the logical consequence of every bixel being perfectly similar

to itself.

The next step consists of calculating the transition cost matrix containing the costs

for concatenating two bixels. Again, the definition from Wenner [48]

Di,j = 1− S ′i+1,j (4.3)

for the transition cost matrix D does not take edge cases into account. The entries

in the last row DN,j of the matrix can not be computed, as S ′N+1,j is out of bounds

and consequently undefined. To obtain appropriate values for this row, we redefine

S′ to be a (N + 2m)× (N + 2m) matrix that results from zero-padding S before

applying a two-dimensional convolution on S with the (2m+ 1)× (2m+ 1) kernel

matrix

K =



w−m 0 0

0
.

...
...

. . . w0
. . .

...
...

. 0

0 0 wm


, (4.4)

where the weights wt ∈ {w−m, . . . , wm} again represent the normalised binomial co-

efficients used in Wenner [48]. With this definition for the matrix S′, the row

N +m+ 1 of S′ corresponds to the undefined row N + 1 of Wenner’s matrix S′

and can be used instead to calculate the last row of the transition cost matrix. It

contains values obtained by applying the kernel that overlapped the zero-padded

region, which are therefore low. This new version of the matrix S′ is illustrated for

our example song in figure 4.2 (c) and (d). With N = 405 bixels and m = 2, the

row in question is number N + m + 1 = 408 and reveals its low values with a blue

colour.

Using the matrix S′′ from equation (4.2) whenever applicable and the above defini-

tion of the (2m+ 1)× (2m+ 1) matrix S′ for computing the last row, we obtain our

improved transition cost matrix D′:

D′i,j =

1− S ′i+1+m,j+m if i = N

1− S ′′i+1,j else.
(4.5)

4.2. Preprocessing 33

(a)

100 200 300 400

100

200

300

400

(b)

385 390 395 400 405

385

390

395

400

405

(c)

100 200 300 400

100

200

300

400

(d)

385 390 395 400 405

385

390

395

400

405

(e)

100 200 300 400

100

200

300

400

(f)

385 390 395 400 405

385

390

395

400

405

0 0.2 0.4 0.6 0.8 1

Figure 4.2.: Self-similarity matrices for the song ”El barzón” from ”Los Amparito”, where
both dimensions describe the bixel index. (a) shows S and (b) a zoomed
version detailing the lower right part. (c) and (d) analogously represent S′

and (e) and (f) the matrix S′′. All values lie in the [0, 1] range and are
coloured according to the colour bar at the bottom.

34 4. System components

Due to the low values in the row N +m+ 1 of S′, the last row of D′ contains high

costs. This is desirable, as it penalises bixel jumps originating from the very last

bixel of the song, which often produce jarring transitions from the silence present at

the end of the music piece to the remaining louder sections.

In contrast to Wenner [48], the diagonal elements representing bixel jumps with a

shift of δ = −1 are not reset to one to avoid the repetition of a single bixel, because

the concept explained in section 4.3.4 is a more general and flexible approach for

avoiding repetitions.

(a)

destination of bixel transition
100 200 300 400

or
ig

in
 o

f b
ix

el
 tr

an
si

tio
n

100

200

300

400

(b)

destination of bixel transition
385 390 395 400 405

or
ig

in
 o

f b
ix

el
 tr

an
si

tio
n

385

390

395

400

405 0

0.2

0.4

0.6

0.8

1

Figure 4.3.: Transition cost matrix D′ for the song ”El barzón” from ”Los Amparito”. (a)
shows the full matrix while (b) shows the lower right part in greater detail.

4.2.2. Transition costs regarding loudness

In the previously constructed transition cost matrix D′ from section 4.2.1, timbre

was taken into account, but loudness plays a very insignificant role. Looking at

the extracted 40-dimensional MFCC vectors used for the calculation, only the first

coefficient, representing a ”collection of average energies of all frequency bands” [52],

provides a rough estimation of the loudness. As a result, loudness has little influ-

ence on the similarity measure obtained by the Spearman rank correlation, leading

to many jumps with extreme loudness differences as discussed in section 2.4. There-

fore, we propose an additional transition cost matrix L, designed to supplement the

transition cost matrix D′. This matrix L aims to describe how jarring the loudness

change between any two bixels would be perceived if played in succession.

4.2. Preprocessing 35

Loudness modelling In contrast to simply calculating the average energy for every

bixel, a loudness model also takes human perception into account: The perceived

loudness of a tone is dependant on its frequency [30], and loud sounds can mask

quieter sounds occurring shortly after [15].

Several loudness models have been proposed, differing in whether they are designed

to be applied to time-varying or stationary sounds [19]. Music falls into the category

of time-varying sounds, as it exhibits a time-dependant behaviour in contrast to

stationary sounds produced by noise-polluting sources like static noise from a TV.

Two widely used models for time-varying sounds have been developed by Zwicker [14]

based on previous work for steady sounds [53] and by Moore and Glasberg [19], again

based on a previous publication dealing with steady sounds [29]. Both are imple-

mented in the openly available ”Loudness Toolbox”[18] for MATLAB. Our tests with

the Loudness Toolbox on the first ten songs of the CC1 database have shown the

Moore and Glasberg model to take approximately 45 to 115 minutes to process one

music piece while the Zwicker model was successfully computed in about one minute

(see table A.6 for details). Even when considering the relaxed time constraints in the

preprocessing stage, the high average runtime of the Moore and Glasberg implemen-

tation makes its usage infeasible in the context of a music rearrangement software.

As the second column in table A.6 shows, we also managed to further reduce the

average runtime of the Zwicker model to approximately 20 seconds by parallelis-

ing the computation with the Parallel Computing Toolbox. Although we are not

aware of publications containing an extensive, qualitative comparison between both

models especially for music signals, the results of both models also obtained with

the implementation from the Loudness Toolbox were found to be very similar when

analysing music in ”A Brief Comparison of Loudness Evaluation Methods” [44].

Therefore, the Zwicker model is computed and its instantaneous loudness extracted,

which represents the loudness in sone over time in the input signal as a discrete

function l(t).

Sone is a psychoacoustic unit measuring how loud a sound is perceived and scales

linearly, that is, a doubled sone value represents a sound that is perceived twice as

loud.

In figure 4.4, the instantaneous loudness function according to Zwicker is plotted.

The loudness first tends to increase steadily, displaying a repetitive pattern due to

the musical structure, and reaches a climax near the end of the piece, before finally

subsiding in the outro.

In the remainder of this section, the loudness function obtained from the loudness

36 4. System components

time (s)
0 20 40 60 80 100 120 140 160 180 200

lo
ud

ne
ss

 (
so

ne
)

0

10

20

30

40

50

60

Figure 4.4.: The instantaneous loudness function l(t) according to the Zwicker model
extracted for the example song ”El barzón” from ”Los Amparito”.

model will be used to generate a measure for the loudness continuity introduced in

section 2.1. The general idea is to calculate the average loudness near the start and

end of the bixels and then compare these measurements for a given pair of bixels to

estimate the loudness continuity when concatenating them.

Assigning loudness to bixels At first, the average loudness at the beginning and

at the end of every bixel is calculated as follows. A parameter tmean defines the

desired amount of seconds at the start and at the beginning of each bixel to take

into account. For this thesis, tmean = 0.2 is used, as it is large enough to be robust

against fluctuations in the loudness curve and short enough to capture the start

and end loudness in a meaningful way. Future work should include optimising this

parameter based on listening experiments.

If the length of the considered bixel bi is shorter than this duration, the window

size tlimi over which the average is calculated has to be restricted to the length of

the bixel to only include loudness values from the bixel itself and none from of its

neighbouring bixels:

tlimi = min{tmean, b
len
i }. (4.6)

As a result, the vector tlim describes how many seconds are used in the average

calculation performed for every bixel.

In figure 4.5, the part of the loudness function displayed in figure 4.4 corresponding

to the bixel 13 of the song ”El barzón” from ”Los Amparito” is presented. The

green and red areas illustrate the time intervals used for the upcoming calculation

4.2. Preprocessing 37

time (s)
5.95 6 6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4

lo
ud

ne
ss

 (
so

ne
)

22

22.5

23

23.5

24

24.5

25

25.5

Figure 4.5.: The part of the loudness function that corresponds to the bixel b13 of the
song ”El barzón” from ”Los Amparito”. The green area is used for the start
loudness and the red area for the end loudness calculation.

of the loudness at the start and at the end of the bixel, respectively. Note that both

intervals are always of the same length and also overlap if the bixel is shorter than

2 · tmean seconds.

Instead of calculating a simple average of all loudness values within these intervals,

we put more weight on loudness values located near the start and end of the bixel,

because they lie closer to a potential jump and therefore have a greater influence on

how the bixel transition is perceived. Mathematically, the weights used for calculat-

ing the loudness averages for a bixel bi are modelled as a linear function wi(t) that

returns zero for t = 0 and has a positive gradient. This gradient is defined in such a

way that the area enclosed between the function and the t axis between t = 0 and

t = tlimi is exactly one, ensuring that the sum of weights used for the subsequent

weighted average calculation is one and no retroactive normalisation is required:

wi(t) =
2t

(tlimi)2
. (4.7)

Based on the weighting functions wi, we compute the vectors lstart and lend containing

a weighted estimate of the loudness at the start and at the end of every bixel:

lstart
i =

∫ bposi +tlimi

bposi

l(t)wi(−t+ bpos
i + tlimi) dt and

lend
i =

∫ bposi+1

bposi+1−tlimi
l(t)wi(t− bpos

i+1 + tlimi) dt.

(4.8)

38 4. System components

The above definition results in a strong influence of the loudness values near the

beginning bpos
i of a bixel bi when calculating its start loudness lstart

i as well as the

values near the end bpos
i+1 of the bixel when calculating its end loudness lend

i .

Loudness continuity measures Given the start and end loudness for every bixel,

two measures of loudness continuity are introduced:

Transitional loudness is based on the idea that a transition from a bixel bi to a bixel

bj is perceived as smooth with regards to loudness if the end loudness lend
i of bixel

bi is approximately equal to the start loudness lstart
j of bixel bj. We shall derive

a N ×N transition cost matrix Ltrans from this idea by calculating the Euclidean

distance between the respective loudness values:

Ltrans
i,j = |lend

i − lstart
j |. (4.9)

All entries in the matrix Ltrans are then divided by the maximum entry to normalise

all values to the range [0, 1].

Comparative loudness is based on the concept that a jump from a bixel bi to another

bixel bj does not produce an irritating loudness change if the musical content that was

expected after bixel bi, namely bixel bi+1, is approximately as loud at the beginning

as the start of the bixel bj which is played instead:

Lcomp
i,j = |lstart

i+1 − lstart
j |. (4.10)

We set lstart
N+1 = 0 for the purpose of this calculation, because the listener expects

silence after the last bixel and thus a loudness of 0 sone. Again we normalise the

entries of the matrix to the [0, 1] range.

Both concepts can arguably describe a condition for the loudness continuity ex-

plained in section 2.1, so we finally combine both loudness matrices into one loudness

matrix L by selecting the pair-wise minimum from both matrices:

Li,j = min{Lcomp
i,j , Ltrans

i,j }. (4.11)

This results in a transition cost matrix L with high costs exclusively for bixel jumps

that fulfil neither of both requirements for loudness continuity, i.e., only unexpected

and large changes in loudness lead to a high transition cost. An example for the

matrix L can be seen in figure 4.6. Structures in the form of rectangles indicate bixels

with similar loudness, whereas the yellow colours visible at the borders demonstrate

the drastic difference in loudness at the beginning and end of the piece compared to

4.2. Preprocessing 39

destination of bixel transition
50 100 150 200 250 300 350 400

or
ig

in
 o

f b
ix

el
 tr

an
si

tio
n

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6.: Loudness matrix L computed according to equation (4.11) for the example
song ”El barzón” from ”Los Amparito”.

the rest. Also note that selecting the successor bi+1 of a bixel bi, that is, not causing

a jump but leaving the original piece as is, incurs no cost: Similar to the transition

cost matrix D′ in section 4.2.1, Li,i+1 = 0 because using equation (4.11) and (4.10),

Li,i+1 = min{|lstart
i+1 − lstart

i+1 |, Ltrans
i,i+1} = min{0, Ltrans

i,i+1} = 0. As a result, only playing

back the original piece and not jumping does not incur any cost.

4.2.3. Automatic segmentation

The proposed restructuring system supports the enforcement of a user-specified tar-

get segmentation (explained in section 4.3.6) for the produced song based on a

ground truth segmentation. Creating such a ground truth segmentation for the

input track can be time-intensive, especially when it is unknown to the user. To

accelerate the process, an automatic segmentation method is employed whose result

provides a basis that can be corrected by the user, if necessary.

Mathematically, we represent the term ”segmentation” introduced in section 2.1

40 4. System components

with C clusters identified by the cluster indices C = {1, . . . , C} and a function s(t)

returning the cluster index of the cluster that the current segment at t seconds in

the music piece is assigned to. In particular, we define the notation sground(t) for

the ground truth segmentation.

Proposed method The method already presented by Wenner [48] will be adopted

in this thesis and further refined. In contrast to Wenner’s method, the self-similarity

matrix S′′ from equation (4.2) is not smoothed with a Gaussian kernel in our im-

plementation, because irregularities in the data are filtered out later in the peak

picking stage. A novelty score representing the likelihood of a segment transition

at a specific time is extracted by convolving the self-similarity matrix S′′ along the

diagonal with an M ×M checkerboard kernel [16]. The values in range of [0, 1]

indicate how much the upcoming part of the song is different to the previous one,

combined with how similar those parts are to each other. Although the last step is

also done in the work of Wenner [48], we use M = 128 instead of M = 96 to detect

segment transitions, because our beat tracker tends to produce shorter bixels and

therefore a larger kernel is needed to cover the same amount of seconds of musical

material on average.

An exemplary novelty curve as a function of time is presented in figure 4.7. Over the

whole duration of 200 seconds, large values correctly indicate a segment transition

at the end of the intro and the beginning of the outro.

In general, local maxima of the novelty curve tend to indicate transitions from one

segment to another and are selected by a process called peak picking implemented

Temporal location of events (in s.)
0 20 40 60 80 100 120 140 160 180 200

co
ef

fic
ie

nt
 v

al
ue

0

0.2

0.4

0.6

0.8

1

Figure 4.7.: Novelty curve extracted for the song ”El barzón” from ”Los Amparito” with
local maxima identified by the peak picking process marked with red circles.

4.2. Preprocessing 41

in the MIR Toolbox [22] for MATLAB with the following settings: The first and

last sample of the novelty curve is not considered as a candidate for a peak, because

the song start and end do not represent transitions from one segment to the next.

Additionally, on a scale where one represents the distance between the maximum

and the minimum of the input signal, only local maxima whose neighbouring local

minima both differ in their coefficient value more than cpeak = 0.1 are selected.

This value is the default in MIR Toolbox, but as part of future work, it could be

dynamically changed depending on how many segments should be identified. The

process above effectively filters the local maxima by marking only a subset of them

as relevant and removes the need for smoothing the similarity matrix as mentioned

at the beginning of this paragraph. For our example in figure 4.7, peak picking

returns the local maxima marked with red circles.

After retrieving the segment transitions, the resulting segments are clustered into

groups according to their musical similarity with the goal of identifying groups of

segments serving the same function. Like in [48], the bixels are assigned to the

different segments according to their position and every segment is assigned a feature

vector calculated as the average of the 40-dimensional MFCC vectors of all its bixels.

Afterwards, the segments along with their MFCC descriptors, which can be viewed

as multi-dimensional points with each point representing a segment, are clustered

with spectral clustering by normalised cuts [40] using the MATLAB implementation

from the ”Graph Demo” package [27].

The primary limitation of this clustering algorithm (shared with many other clus-

tering algorithms) is that the number of clusters C has to be known in advance and

specified as input. This is reflected in the previous work from Wenner [48], in which

the user has to select a specific value for C in the hope of obtaining a meaningful

segmentation. In this thesis, we will go one step further towards fully automating

and thereby accelerating the whole process of creating a ground truth segmentation

by automatically selecting the optimal number of clusters C within a given range

Crange = [Cmin, Cmax], where Cmin and Cmax are user-specified positive integers and

2 ≤ Cmin ≤ Cmax. Additionally, the maximum number of clusters Cmax can be at

most equal to the number of detected segments, because every segment can only be

assigned to exactly one cluster. The optimal number of clusters Copt is then defined

as the value for C ∈ Crange whose associated clustering result fits the given segment

features best, according to some evaluation metric ceval(C):

Copt = arg max
C∈Crange

{ceval(C)}. (4.12)

42 4. System components

Silhouette Value
0 0.2 0.4 0.6 0.8 1

C
lu

st
er

1

2

3

(a)

Silhouette Value
0 0.2 0.4 0.6 0.8 1

C
lu

st
er

1

2

3

4

(b)

Figure 4.8.: Spectral clustering results of the song ”El barzón” from ”Los Amparito” with
(a) C = 3 and (b) C = 4 clusters evaluated using a silhouette plot. Each
bar represents the silhouette value of a segment.

In order to evaluate the function ceval(C) for a specific C, we calculate the silhouette

value csil(i) ∈ [−1, 1] for every segment that was clustered [36]. The silhouette of a

point (equivalent to a segment in our context) is high, if the other points in the same

cluster are close and there is a large distance to the points in the other clusters, indi-

cating that it is clustered correctly. Therefore, we use the mean of the silhouette of

all segments as metric ceval(C) and select the clustering that produces the maximum

average silhouette value. Note that the user can still enforce a specific number of

clusters C to be used and avoid this automatic selection by setting Cmin = Cmax.

The procedure is visualised using our example song and Crange = [3, 4] in figure 4.8.

When clustering with C = 3, every segment except the intro and outro (clusters

two and three) is assigned to the first cluster. As figure 4.8 (a) shows, this is an

acceptable clustering since the intro and outro sound very different from the rest of

the piece and differences between segments in the first cluster are comparatively low.

The segment with the largest difference in this first cluster is assigned to an extra

cluster when setting C = 4. However, this visibly lowers the silhouette values of the

Figure 4.9.: Clustering of the song ”El barzón” from ”Los Amparito” with C = 3 clusters
chosen from the possible values in Crange = [3, 4]. The red section marks the
intro and the green section the outro, while the segments in between were
merged to one large cluster.

4.3. Path optimisation 43

remaining segments seen in figure 4.8 (b), because their distance to this new cluster

is quite low. Taking the average over the silhouette values of every segment for both

settings, we obtain ceval(3) = 0.846 and ceval(4) = 0.8. As a result, the clustering

with C = 3 clusters is chosen as the final output, because it exhibits a higher mean

silhouette value than all other clusterings in the Crange interval.

Figure 4.9 displays the resulting segmentation for the example song by highlighting

the waveform with a colour corresponding to the assigned cluster.

In the following section, we will explain how the path optimisation stage utilises

the musical information about the original track obtained by the methods described

in this section in order to find the optimal arrangement that fulfils the given user

constraints.

4.3. Path optimisation

This section is concerned with finding an optimal solution given a set of user con-

straints. At first, path optimisation will be formally introduced as a problem in

the upcoming section 4.3.1. The following section 4.3.2 deals with estimating the

length of the optimal path a priori, that is, before an optimisation algorithm is ex-

ecuted. Section 4.3.3 will provide the basis for a cost function that incorporates

some user constraints and is subsequently extended with the repetition avoidance

concept in section 4.3.4. After the necessary problem and cost function definitions,

a version of the A* algorithm supporting multiple goals and employing specially

designed heuristics will be presented in section 4.3.5. Finally, modifying the cost

function during the execution of the path optimisation algorithm will be introduced

in section 4.3.6 as a method to ensure that the segmentation of the resulting song

matches the user-defined target segmentation.

4.3.1. Problem formulation

Formally, a path through the original music piece, called bixel path, can be defined

as a vector containing the indices of the k bixels visited along the path in their order

of occurrence:

p = (p1, p2, . . . , pk). (4.13)

Given a term Ti,j describing the cost of selecting bixel bj as successor to bixel bi in

such a path, for which the basis will be established in section 4.3.3 and which will

44 4. System components

be explicitly defined in section 4.3.4, the total cost of a bixel path p is given by

cpath(p) =
k−1∑
i=1

Tpi,pi+1
. (4.14)

Not all possible paths are valid as they are constrained by various user-defined

parameters: By default, the start time tstart and end time tend are set to the

beginning and the end of the original music piece, respectively, to ensure that the

resulting music piece starts and ends in the same manner as the original. However,

they can be changed to arbitrary positions in the music piece by the user. Assuming

these positions correspond to the bixels bistart and biend , only paths containing at least

k ≥ 2 bixels with p1 = istart and pk = iend are considered valid in the optimisation

problem.

Additionally, a positive target duration ttarget in seconds in conjunction with a non-

negative tolerance value ttol < ttarget in seconds are given by the user to constraint

the duration of the final music piece to the interval

trange = [tmin, tmax] = [ttarget − ttol, ttarget + ttol]. (4.15)

These two parameters enable the user to control the trade-off between the accuracy of

the produced result regarding the resulting duration and the quality of the discovered

path: Higher values for ttol lead to more valid solutions of which the best one is

determined, but the duration of the resulting music piece can deviate more from the

target duration.

The length of a valid bixel path is equivalent to the duration of a music piece as-

sembled according to this bixel path, containing the first bixel in the path beginning

at tstart and all remaining bixels in this path including the last bixel up to the end

time tend. More formally, the length can be expressed as a function d(p) calculating

the sum of the length of the bixels used, subtracted by the portions of the start and

end bixels that are not included in the result because they lie before or after the

specified start time tstart or end time tend, respectively:

d(p) =
k∑
i=1

blen
pi
− (tstart − bpos

istart
)− (bpos

iend+1 − tend). (4.16)

Suppose we know the optimal bixel path ok of all valid bixel paths with k bixels for

every value of k ≥ 2. Given the resulting length of a bixel path d(p), we define the

space of possible solutions as all possible values for k whose associated bixel path

ok leads to a result with a duration d(ok) in the trange interval. The optimisation

4.3. Path optimisation 45

problem then consists of selecting the value for k from this solution space for which

the optimal bixel path ok has the least cost cpath(ok):

kopt = arg min
k≥2

{cpath(ok) | d(ok) ∈ trange}. (4.17)

In case no value for k fulfils this requirement, that is, there is no k for which ok

represents a path with a length within the defined interval trange, the k value leading

to the path deviating the least from the target duration trange is selected instead:

kopt = arg min
k≥2

{min{|d(ok)− tmin|, |d(ok)− tmax|}}. (4.18)

However, the optimal path ok can not be computed for every possible k as it can be

arbitrarily large. For this reason, a range of possible values is estimated in the next

section 4.3.2 by considering how long a bixel path with a specific amount of bixels

can be. The corresponding optimal bixel paths ok are then obtained by executing

the path optimisation algorithm outlined in section 4.3.5.

4.3.2. Estimating the path length a priori

Unfortunately, the number of bixels needed to produce an output with a specific

length can only be estimated, if bixel lengths are not completely equal, because se-

lecting shorter bixels leads to a shorter output than concatenating the same number

of longer bixels.

At first, we develop an upper limit for the number of bixels in a valid bixel path.

The first bixel of a valid bixel path is always bistart , the last bixel is always biend and

both contribute a constant amount of seconds tcon ≥ 0 to the total length of the

path, depending on the start and end times:

tcon = (bpos
istart+1 − tstart) + (tend − bpos

iend
). (4.19)

So all valid bixel paths only vary in their selection of the remaining k′ = k−2 bixels.

Because a valid bixel path’s length must fulfil the user-specified target duration range

trange and the first and last bixel account for tcon seconds, these remaining k′ bixels

must have a length in the range

t′range = [t′min, t
′
max] = [tmin − tcon, tmax − tcon]. (4.20)

Because every one of these k′ bixels contributes to the total duration with at least

the length of the shortest bixel available and the maximum length specified is t′max,

46 4. System components

a theoretical upper limit of k′ for this target duration is

k′limit = d t′max

mini{blen
i }
e. (4.21)

Although optimising over the whole possible range k ∈ [2, k′limit + 2] covers all valid

solutions, it is also computationally expensive, because k′limit is typically large when

outliers in the form of particularly short bixels occur. Therefore, we propose an

estimation method to significantly reduce the runtime by calculating the narrowest

range krange = {kmin, ..., kmax} of values for k whose associated paths still contain

an optimal solution with a probability higher than a threshold pmin ∈ [0, 1). This

minimum success probability pmin is intended to provide a trade-off between path

optimisation accuracy and runtime. Setting a suitable default value for the minimum

probability pmin is discussed in the evaluation section 5.1.1.

In the remainder of this section, a statistical description of the potential length of

a bixel by representing it as a random variable and based on its combinations an

estimate of a bixel path’s length will be obtained in the form of another random

variable. The values of random variables are dependant on chance and are typically

described by probability distributions (noted by the symbol ∼) that describe this

relationship between probability and value. Additionally, let P (X = a) denote the

probability of a random variable X exhibiting a value equal to a.

We assume the length of the n-th randomly selected bixel from the available bixels

b1, . . . , bN to be a normally distributed random variable

Bn ∼ N (µb, σ
2
b) where

µb =
1

N

N∑
i=1

blen
i and

σ2
b =

1

N

N∑
i=1

(blen
i − µb)

2
.

(4.22)

The normal distribution in this case has an average equal to the average bixel length

and the variance is calculated as the sum of quadratic distances of the bixel lengths

from this average. For our example song, the probability distribution for Bn, which

is the same for every n, is plotted in figure 4.10 (a) and exhibits a very narrow peak

around the mean bixel length of 0.48, because the bixel lengths do not deviate much

from this average.

Based on this statistical model of the length of a beat, consider then the random

4.3. Path optimisation 47

length x (s)
0 0.2 0.4 0.6 0.8 1

P
(B

n
 =

 x
)

0

0.1

0.2

0.3

0.4

0.5

0.6
(a)

length x (s)
47 48 49 50

P
(L

k'
 =

 x
)

0

0.02

0.04

0.06

0.08
(b)

Figure 4.10.: Probability distribution of every random variable Bn representing the
length of the n-th randomly selected bixel for the song ”El barzón” from
”Los Amparito”plotted in (a) and the probability distribution of the length
of a path with k′ bixels Lk′ for k′ = 100 in (b).

variable Lk′ describing the length of a path containing k′ bixels, consisting of the

sum of all its bixel’s lengths:

Lk′ =
k′∑
i=1

Bi. (4.23)

Thus, Lk′ describes the result of an experiment in which a random bixel is selected

k′ times and whose lengths are summed. In other words, Lk′ represents the length of

a valid bixel path containing k = k′ + 2 bixels, beginning with the start bixel bistart ,

followed by the k′ randomly selected bixels and ending with the end bixel biend , but

subtracted by tcon seconds.

As the next step, we statistically represent the outcome of this experiment again

using a normal distribution: Because the sum Z = X + Y of two normally dis-

tributed random variables X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) is itself a random vari-

able Z ∼ N(µ1 + µ2, σ
2
1 + σ2

2) following a normal distribution, Lk′ is also normally

distributed:

Lk′ ∼ N (k′µb, k
′σ2

b). (4.24)

The probability of a bixel path with k′ bixels having a total length of l seconds is

thus equal to P (Lk′ = l) according to our model. For k′ = 100 bixels, the resulting

probability distribution for L100 is plotted in the range where it deviates significantly

48 4. System components

from zero in figure 4.10 (b). With a very high probability, a random selection of

k′ = 100 bixels will amount to musical material with a total duration between 47

and 50 seconds.

Using this statistical basis, we estimate the probability that a valid bixel path with k

bixels, which contains k′ = k−2 freely selectable bixels, has a length within the user-

specified target duration range trange. This probability is equal to the probability of

k′ randomly selected bixels having a total length in the range t′range and is calculated

for every k ∈ [2, k′limit + 2]:

Plen(k) = P (t′min ≤ Lk−2 ≤ t′max). (4.25)

Note that beginning with this function Plen(k), the estimation will from now on not

be based on k′ but rather k, which includes the first and last bixel of a valid bixel path

and can be used by the path optimisation process described in section 4.3.5. This is

achieved by referencing the random variable Lk−2 as well as the corrected duration

boundaries t′min and t′max. For visualisation purposes, setting t′range = [120, 130] for

our example song results in a high probability for bixel paths with about 240 to 275

bixels to achieve a length between 120 and 130 seconds, as shown in figure 4.11 (a).

Under the assumption that optimal solutions are uniformly randomly distributed

across the valid solutions, this probability distribution for valid solutions is now

divided by its total probability to obtain the probability of an optimal solution at a

k
230 240 250 260 270

P
le

n
(k

)

0

0.2

0.4

0.6

0.8

1
(a)

k
230 240 250 260 270

P
op

t(k
)

0

0.01

0.02

0.03

0.04

0.05
(b)

Figure 4.11.: Probability Plen(k) of k′ = k − 2 bixels having a length between 120 and
130 seconds plotted in (a) over the relevant k range for the song ”El barzón”
from ”Los Amparito”. Corresponding probability distribution for Popt for
the optimal solution plotted in (b).

4.3. Path optimisation 49

specific value of k ∈ [2, k′limit + 2]:

Popt(k) =
Plen(k)∑k′limit+2

i=2 Plen(i)
. (4.26)

In figure 4.11 (b), the resulting probabilities of Popt(k) are plotted for our exemplary

settings.

The final task of choosing the krange so that kmax − kmin is minimised to reduce

computational costs, while ensuring that the success probability

psucc =
kmax∑
k=kmin

Popt(k) (4.27)

is greater than the parameter pmin, is solved optimally by the algorithm 4.1.

To informally prove the optimality of this algorithm, we need to make the following

observation about the function Popt(k). It has exactly one maximum and the func-

tion is monotonically increasing before and decreasing after this maximum. This

is reasoned by its construction with the function Plen(k), which calculates the area

of the probability distribution functions corresponding to Lk′ that increase in their

average using the constant target duration interval t′range as bounds.

A key statement is that for every d = kmax − kmin ≥ 0, the algorithm selects the

krange = {kmin, . . . , kmin + d} leading to the highest possible success probability psucc.

Beginning with d = 0, this can be proven by induction: In the first three lines

of the algorithm, kmin and kmax are both set to the position of the maximum of

Input: Popt(k), pmin

Output: kmin, kmax

1: kmin = arg maxk{Popt(k)}
2: kmax = kmin

3: pcurr = Popt(kmin)
4: while pcurr < pmin do
5: if Popt(kmin − 1) > Popt(kmax + 1) then
6: kmin = kmin − 1
7: pcurr = pcurr + Popt(kmin)
8: else
9: kmax = kmax + 1

10: pcurr = pcurr + Popt(kmax)
11: end if
12: end while

Algorithm 4.1: Selection of the optimal krange

50 4. System components

Popt(k), so no other krange can provide a higher success probability. Assume that

for an arbitrary, but constant value of d, the optimal krange equals {k̂min, . . . , k̂max}.
Note that the range {k̂min, . . . , k̂max} has to contain the positions of all the d highest

values of the function Popt(k) in order to optimal, because due to the mentioned

property of Popt(k), they are always directly adjacent to each other and lie in one

continuous interval. As a result, the optimal krange for d+ 1 has to contain the d+ 1

highest values, so it must cover the whole previous krange and additionally include

the d+ 1-highest value, which has to be located at either k̂min − 1 or k̂max + 1. The

algorithm executes this induction step in the loop starting at line four and exactly

selects this required position after deciding between both candidates in line five.

When constructing the krange in this manner, the optimal krange is found as soon

as its corresponding success probability psucc is at least pmin, because the success

probabilities for any krange with a lower value of d were already computed and did

not exceed the required threshold given by pmin.

This concludes our informal proof of the optimality of the algorithm 4.1 and the

description of how a range for the number of required bixels for a valid bixel path

is calculated. In the next section, we will introduce a unified cost matrix designed

to combine multiple user constraints into one, uniform representation.

4.3.3. Unified cost matrix

The following section defines the overall costs of transitioning from one bixel to an-

other, unifying multiple constraints into a N×N unified cost matrix T′. This allows

not only for a compact description of constraints but also accelerates implementa-

tions of path optimisation, because instead of computing bixel transition costs by

interpolating between multiple values from different matrices and vectors possibly

multiple times for the same pair of bixels, just one access to retrieve the final value

from the unified cost matrix is required.

One of the constraints represented in this unified cost matrix is called importance

and is defined as a function I(i) ∈ [0, 1] returning for all i ∈ {1, . . . , N} a value

influencing the probability of the bixel bi being included in the output [48]. The

perception-based transition costs precomputed in the preprocessing stage for timbre

in the matrix D′ from section 4.2.1 and for loudness described by the matrix L in

section 4.2.2 also have to be integrated into the music rearrangement system.

An observation already made in [48] is that the importance constraint can be merged

with the perception-based transition costs. In a similar fashion, we merge the impor-

tance and both transition costs according to timbre and loudness mentioned above

4.3. Path optimisation 51

into one unified cost matrix T′ with

T ′i,j = wdD
′
i,j + wlLi,j + wpI(i) with

wd + wl + wp = 1 and

wd, wl, wp ∈ [0, 1],

(4.28)

where the weight variables allow the user to control the influence of the different

aspects on the selected jumps: In case the user does not want to work with the

importance concept, wp = 0 prevents the importance function from having any in-

fluence on the result. If the produced cuts exhibit irritating changes in loudness,

the user can increase the weight wl of the loudness matrix L, so the costs of jumps

with these loudness differences increase and will be avoided by the subsequent path

optimisation. Alternatively, the user can enable the loudness equalisation method in

section 4.4.2 to not avoid these jumps, but equalise the produced loudness differences

present in the constructed signal.

To prevent the bixels near the end of the song ”El barzón” from being used in

the result for example, one can define an importance function as illustrated in fig-

ure 4.12 (a) to penalise the use of such bixels with a cost of one. For the user,

the domain of this function is based on all time points in the song to allow for

an intuitive design of the function independent of the notion of bixels. In our re-

(b)

destination of bixel transition
100 200 300 400

or
ig

in
 o

f b
ix

el
 tr

an
si

tio
n

100

200

300

400 0

0.2

0.4

0.6

0.8

1

bixel i
0 100 200 300 400

I(
i)

0

0.2

0.4

0.6

0.8

1
(a)

Figure 4.12.: Exemplary importance function for the song ”El barzón” from ”Los Ampar-
ito” in (a) describing the cost of including a specific bixel in the resulting
song, making it very costly to use the bixels near the end of the song.
Unified cost matrix T′ displayed in (b) generated with the parameters
wd = 0.4, wl = 0.3 and wp = 0.3, using the importance curve from (a).

52 4. System components

structuring system, it is converted to the bixel-wise representation I(i) by sampling

the user-specified function at the center of every bixel. Afterwards, the importance

function I(i) is integrated according to the wp parameter into the unified cost ma-

trix T′, making it more costly to include jumps originating from the bixels near the

end, seen in figure 4.12 (b) as a light green, horizontal colouration of the matrix.

As a result, solutions involving these bixels increase in cost, because any transition

originating from such a bixel is costly - even selecting the successive bixel, which

normally does not cost anything as mentioned in sections 4.2.1 and 4.2.2, now has

a cost of T ′i,i+1 = wpI(i).

Overall and most importantly, the matrices D′ and L describing the respective tran-

sition costs regarding timbre and loudness were merged into one unified transition

cost matrix T′. Please refer to section 5.2.1 for an investigation into suitable set-

tings for the weights wd and wl of the transition cost matrices so that the perceived

transition quality is as good as possible.

4.3.4. Repetition avoidance

We introduce a novel constraint to avoid highly repetitive results that occurred often

during the evaluation of the method by Wenner [48] in section 2.4. These results use

the same few bixels very often in direct succession and tend to not only be annoying

for the user, but also misrepresent the original piece, as many of its sections are left

out in the result. This is caused during the path optimisation stage by backward

bixel jumps with a short distance and a low cost, which are utilised very often and

still lead to a bixel path with a low cost that is finally selected as the optimal bixel

path.

One possible approach to this problem is to modify transitions costs when con-

sidering the shortest path for every bixel visited during the path optimisation by

calculating penalties for the transitions to all successor bixels based on how often

and where they occur in this path. Although this is a very exact method to avoid

the too frequent usage of a few bixels, it is also very computationally expensive as

potentially millions of bixel transitions are considered that each require their own

calculation.

Instead, we employ a simpler concept called repetition avoidance. The idea is to

impose a high cost on backward bixel jumps, particularly those with a short distance

that consequently are likely to cause a repetition of only a few bixels, to avoid an

excessive usage of these jumps in the results. The cost is dependant on how many

bixels the jump probably causes to be replayed. A bixel jump with a shift of δ = −x

4.3. Path optimisation 53

bixels is penalised with double the cost of a bixel jump with a shift equal to δ = −2x.

This works under the assumption that the influence of every backward jump in the

solution on the length of the produced music piece is independant of all other jumps

in the solution. More accurately, a bixel jump following a backward bixel jump is

presumed to occur at the origin of this backward jump at the earliest, so that the

number of repeated bixels is equal to its distance. If the next jump is a forward bixel

jump occurring earlier than the origin of the backward bixel jump, the repeated

segment is shorter than estimated. As a consequence, repetition avoidance is an

approximative approach and does not guarantee the complete elimination of short

repetitions.

Again, we aim to integrate constraints into one unified cost matrix, whenever pos-

sible: The matrix T′ from the previous section 4.3.3 is modified along the diagonal

and below to form a new N ×N unified cost matrix T:

Ti,j =

T ′i,j if i < j

min{T ′i,j + crep(i− j + 1), 1} else,
(4.29)

where crep(i) represents the penalty for a backward bixel jump with a distance of i

that leads to an extension of the piece by i bixels:

crep(i) =
wr

i
. (4.30)

The variable wr ≥ 0 is a user-defined value controlling how strongly repetition

avoidance is applied. Setting it to zero will lead to T = T′ and therefore disable

repetition avoidance, while increasing values will penalise backward bixel jumps with

a larger distance and to a greater extent.

A value of wr = 4 results in a matrix depicted in figure 4.13 for our example,

exhibiting costs near one along the diagonal and below, which decrease in the lower

left direction (orthogonally to the diagonal). This makes solutions involving short

backward bixel jumps, which are located along this diagonal, costly and thus less

likely to be selected as the optimal path.

A suitable default value for wr will be determined in the corresponding evaluation

section 5.1.3.

The resulting unified cost matrix T is used for the path optimisation process as

it combines importance, timbre, loudness perception and repetition avoidance with

respective weighting parameters. It is recomputed every time a new song should

be created with different constraint settings or weights and significantly reduces

54 4. System components

destination of bixel transition
50 100 150 200 250 300 350 400

or
ig

in
 o

f b
ix

el
 tr

an
si

tio
n

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.13.: Unified cost matrix T for the song ”El barzón” from ”Los Amparito” with a
repetition avoidance setting of wr = 4, using the matrix T′ from figure 4.12

the computation time of path optimisation, because every possible bixel transition

cost is only calculated once and then stored for repeated access instead of being

calculated multiple times.

4.3.5. Multiple goal A* algorithm

This section is concerned with obtaining the optimal bixel path based on the def-

initions from section 4.3.1. A novel algorithm will be proposed to accelerate this

pathfinding process compared to the previous work in [48]. Both the proposed al-

gorithm as well as the dynamic programming approach used in the previous work is

implemented in C++ in our music rearrangement system, as it offers high perfor-

mance and introduces low overhead that can be reduced even further by optimising

the performed instructions on a low level.

4.3. Path optimisation 55

The dynamic programming approach by Wenner [48] is based on a recursive for-

mulation for the cost of the minimum path from bixel bistart to any bixel bi with

k-stops:

Cstart(i, k) = min
j∈{1,...,N}

{Cstart(j, k − 1) + Tj,i}. (4.31)

After initialising all values Cstart(i, 2) with the cost of all transitions originating

from the start bixel Tistart,i, dynamic programming is used to iteratively compute

Cstart(i, k) for each k, beginning with k = 3 and ending with k = kmax. The run-

time complexity is Θ(N2 kmax) and needs Θ(N kmax) of space for the array holding

the Cstart(i, k) values. Because the runtime grows quadratically with the amount of

bixels in the original piece and therefore tendentially with the length of the original

music piece, longer music causes long waiting times when restructuring. Addition-

ally, all possible transitions at all positions in the bixel path are considered in the

process, despite the possibility that some of these transitions make a bixel path too

costly to be optimal and therefore do not have to be traversed.

In the remainder of this section, we will represent the problem as a single-source

shortest-paths problem in a graph and propose a more efficient algorithm on this

basis. Although the asymptotic complexity is still O(N2 kmax) in the worst case,

the runtime required in a real-world setting is often considerably lower than the

dynamic programming approach from Wenner [48] as the evaluation section 5.1.2

shows, because fewer bixel transitions have to be taken into account while searching

for the optimal bixel path.

Formulation as a graph problem We will represent every possible bixel path

starting with the bixel bistart with an equivalent path in a graph, enabling a graph

algorithm that is presented later to traverse the graph in search of the optimal

path. Consider a directed, weighted graph G = (V , E , ct), where every vertex vi,k

represents a bixel bi in combination with the position k it is used in a bixel path

and where every edge represents the act of transitioning from one bixel to another

in such a bixel path along with its associated transition cost. If the edge costs are

then set according to the transition costs contained in the unified cost matrix T,

the resulting graph G exactly represents our path optimisation problem.

56 4. System components

More specifically, the vertices and edges as well as their costs are defined as

V ={vistart,1} ∪ {vi,k | i ∈ {1, . . . , N} ∧ k ∈ {2, . . . , kmax}},

E ={(vistart,1, vi,2) | i ∈ {1, . . . , N} ∪

{(vi,k, vj,k+1) | i, j ∈ {1, . . . , N} ∧ k ∈ {2, . . . , kmax − 1}},

ct(vi,k, vj,k+1) =Ti,j.

(4.32)

In this graph, every possible bixel path is represented by exactly one path originating

from the node vistart,1. All other nodes can be visually aligned on a grid as shown

in figure 4.14 with the horizontal axis representing the number of bixels k and the

vertical axis representing the original bixels.

Therefore, visiting a node vi,k is equivalent to selecting bixel bi as the k-th bixel

in a bixel path. Because only paths with biend as the last bixel are valid and the

exact k value is not known beforehand, but rather a range of solutions across the

krange determined in section 4.3.2 should be computed, a set of goal nodes, which

are highlighted in red in figure 4.14, is defined:

Gend = {viend,k | k ∈ krange}. (4.33)

Note that the dynamic programming approach from Wenner [48] is equivalent to a

vi ,1start

k

i

v1,2 v1,3 v1,kmin
v1,kmax

vi ,kmaxend

vN,k max

Figure 4.14.: The graph G representing the problem space with the current position in
the considered bixel path k on the horizontal and the bixel number i of
the included bixel on the vertical axis. The start node vistart,1 is coloured
in green, while the set of goal nodes Gend is coloured red.

4.3. Path optimisation 57

graph algorithm calculating the shortest path to every node in the graph G in a

column-wise manner by considering every one of its predecessor nodes. This results

in |E| = N2(kmax−2)+N operations, as every edge in the graph is used to check for

a potentially better path. But in reality, some of these transitions are not used in the

final solution due to their high cost. As implied in section 4.2.1, this is often the case

for bixel jumps originating from the last bixel. Remember that bixel jumps in either

direction always incur some cost, so a bixel path with a large amount of these jumps

is not likely to be optimal - despite that, paths like these are taken into consideration

and slow down the computation. This motivates the idea of minimising the amount

of calculated transitions.

Graph algorithm selection and adaption With the given graph, the optimisation

problem is equivalent to a single-source shortest paths problem with multiple goals,

because the shortest path to any node contained in the set of goals has to be found

from a given start node.

For this type of problem, Dijkstra’s algorithm [11] is typically employed, which pro-

cesses nodes in the order of their minimum distance to the start node. Consequently,

edges leading to an already processed destination node do not have to be taken into

account, because the shortest path from the start node to these processed nodes are

already known and only worse paths can be found afterwards.

Another solution is known as the A* algorithm [20] and manages two sets of nodes,

the closed set containing already evaluated notes to which the shortest path is known

and the open set containing the set of tentative nodes still requiring an evaluation. It

is a generalisation of Dijkstra’s algorithm as it employs a heuristic, which estimates

the minimum remaining distance from a node to the goal in order to process more

”promising”nodes first, and behaves exactly like Dijkstra’s algorithm if this heuristic

function is set to zero. Assuming the heuristic function ĥ used is monotonic (which

is defined later in this section), the pseudo code 4.2 together with the termination

condition check in pseudo code 4.3 describes the A* algorithm.

In the first four lines, the open and closed sets are initialised and the function

g representing the distance from the start node for any given node as well as the

estimate f returning an estimate for the total cost of a path from the start to the end

goal through a given node are both set to return zero for the start node. Afterwards,

a loop starts and first determines the most promising node with the lowest f value of

all nodes from the open set (line six), then removes it from the open set (line seven)

and afterwards adds it to the closed set (line eight), because the optimal path to

58 4. System components

Input: Graph G, heuristic ĥ, start node vs, goal node vg

Output: Backtrackable shortest path given by ppred

1: Vclosed = ∅
2: Vopen = {vs}
3: g(vs) = 0
4: f(vs) = 0
5: while Vopen 6= ∅ do
6: v = arg minv∈Vopen{f(v)}
7: Vopen = Vopen \ v
8: Vclosed = Vclosed ∪ v
9: if goalCheck(Vclosed) then

10: return ppred

11: end if
12: for each e = (v, v′) ∈ E do
13: if v′ ∈ Vclosed then
14: continue
15: end if
16: gcurr = g(v) + ct(e)
17: if v′ /∈ Vopen ∨ gcurr < g(v′) then
18: Vopen = Vopen ∪ v′
19: ppred(v′) = v
20: g(v′) = gcurr

21: f(v′) = gcurr + ĥ(v′, vg)
22: end if
23: end for
24: end while

Algorithm 4.2: A* algorithm for a single goal with a monotonic heuristic ĥ

this node from the start node is known at this point. Then the function described

by the pseudo code 4.3 is executed, checking whether the goal node vg is now in

the closed set, at which point the algorithm can stop and return the function ppred

that allows the optimal path to be retrieved via backtracking, starting at the goal

node and retrieving the next node with this function until the start node is reached.

Beginning in line twelve, all neighbours of the current node v not in the closed set

are investigated in regards to a shorter path to this node through the current one:

The length of the best possible path to the neighbour v′ through v is computed in

line 16 and line 17 checks if this solution is better than any previously calculated

ones: If the neighbour is not in the open set or the current length gcurr is lower than

the best found so far, we make sure it is now in the open set and assign v as the

predecessor of v′ in the optimal path and update the distance functions f and g with

this new cost, additionally including the heuristic estimate for g.

4.3. Path optimisation 59

Input: Current set of closed nodes Vclosed, goal node vg

Output: Boolean indicating termination
1: function goalCheck
2: if vg ∈ Vclosed then
3: return true
4: else
5: return false
6: end if
7: end function

Algorithm 4.3: Function goalCheck as a a subroutine of the A* algorithm for a single
goal, checking the termination condition

Note that reducing the function values of f in line 21 implies a different order of nodes

in the open set Vopen in which they are extracted in line six. A fast implementation

of both of these instructions, especially the change of node value in line 21 as it is

potentially executed very often, is a crucial factor for the runtime of the algorithm.

Therefore, we chose the Fibonacci heap [17] as a data structure for maintaining the

open set. It offers a constant amortised runtime for the decreaseKey operation that

is executed in line 21 when the associated value of a node is reduced and the data

structure holding the nodes therefore needs to be updated to maintain the order of

nodes internally, so it can still provide a constant runtime for the minimum node

extraction in line six. We use the ”Boost” C++ libraries [3], because they feature

an efficient implementation of the Fibonacci heap.

While the A* algorithm is designed to find the shortest path to a single goal node,

we defined a set of goals Gend in equation (4.33), for which we need to determine the

optimal path. Consequently, we adapt the A* algorithm to a multiple goal A*

algorithm able to compute the shortest path from a start node to any of the goal

nodes. Instead of a single goal node vg, the input consists of the set of goals defined

in equation (4.33) and the goalCheck function is replaced by an altered version

outlined in pseudo code 4.4. The termination condition now requires all goals in the

goal set to be an element of the closed set, i.e. the optimal path to all goals has to

be known. At that point, there exists no undiscovered, shorter path to any of the

goal nodes and the shortest paths can thus be recovered by backtracking the paths

starting from every goal node with the predecessor function ppred. Finally, from all

these shortest paths, the optimal bixel path is selected according to the equations

(4.17) and (4.18).

As an additional modification, the heuristic function needs to be adapted to accom-

modate multiple goals. In the remainder of this section, this issue will be handled

60 4. System components

Input: Current set of closed nodes Vclosed, set of goal nodes Gend

Output: Boolean indicating termination
1: function goalCheck
2: if Gend ⊆ Vclosed then
3: return true
4: else
5: return false
6: end if
7: end function

Algorithm 4.4: Function goalCheck as a a subroutine of the multiple goal A* algorithm,
checking the termination condition

after explaining the concept of a heuristic function in greater detail. Afterwards,

several specific definitions of heuristics will be presented for the problem at hand.

Heuristics design

A heuristic function ĥ(v, g) for the A* algorithm returns an estimate of the dis-

tance between a node v and a goal node g. This allows the algorithm to consider

”promising” nodes first, while nodes with a presumably long distance to the goal are

visited later in the process, or not at all. Because the heuristic must be evaluated for

every visited node, its computational complexity should ideally be in O(1), as oth-

erwise the time required for computing the heuristic estimates in practice outweighs

the time saved by visiting fewer nodes.

Formal requirements for heuristics For the correctness of the algorithm the heuris-

tic used has to be admissible, that is, it never overestimates the actual distance h

to the goal but rather provides a lower bound:

∀v ∈ V : ĥ(v, g) ≤ h(v, g). (4.34)

If the heuristic is not admissible, the A* algorithm could overlook the optimal solu-

tion due to overestimating the total cost of a path.

As already stated, the outlined pseudo code 4.2 only works for a monotonic heuristic.

While an alternative implementation without this condition could be used, it is

desirable to fulfil the monotonicity requirement, because then the paths calculated

to nodes in the closed set are guaranteed to be optimal. Consequently, the evaluation

of other paths leading to those nodes can be omitted during the remainder of the

pathfinding process.

4.3. Path optimisation 61

A heuristic is monotonic, if

∀ (v1, v2) ∈ E : ĥ(v1, g) ≤ ct(v1, v2) + ĥ(v2, g). (4.35)

This means that for every node along a path, the total estimated cost consisting of

the shortest distance to this node plus the heuristically estimated remaining distance

to the goal can not decrease when travelling along this path.

Due to not knowing the optimal k value a priori, Gend was defined in equation (4.33),

representing the possible final nodes of a valid bixel path. As a consequence, the

heuristic has to be adapted to be able to handle multiple goals. A multiple goal

heuristic function ĥ′ for a given set of goals G describes the minimum distance

from a node v to any of the goal nodes and can be constructed from a single goal

heuristic ĥ by selecting the minimum of ĥ evaluated for every goal in G separately:

ĥ′(v,G) = min
g∈G
{ĥ(v, g)}. (4.36)

After this theoretical introduction, we will present several concrete heuristics specif-

ically tailored to our path optimisation problem.

Designing a problem-specific heuristic In many practical applications of the A*

algorithm like real-world navigation, the nodes on the graph can be positioned in

Euclidean space so that their Euclidean distances between each other in this space

can be used as a simple and meaningful lower bound for the distances in the graph.

Unfortunately, the costs for jumping between different bixels follow no such obvious

rule, as the costs for bixel jumps in either direction are not only dependant on their

distance – for example, jumping a few bixels ahead may incur a greater cost than

jumping from the beginning to the end of the song - and vice versa. However, bixel

jumps always cause some cost and therefore skipping a specific amount of bixels in

total has some associated minimum cost, which will motivate the first of the three

heuristics outlined in this section.

Travel distance heuristic The basic idea of the travel distance heuristic is to

determine the minimum cost per bixel skipped in the forward or backward direction

to estimate how ”efficient” any jump can be at most in terms of cost per distance.

At runtime for a given node, the minimum amount of bixels the piece has to be

lengthened or shortened to reach a goal node is determined and multiplied with the

minimum cost per bixel skipped in the respective direction to yield a lower bound

for the remaining cost.

62 4. System components

First, we will introduce the heuristic for the case in which only a single goal exists

for better comprehensibility before deriving the final, similar multi-goal heuristic.

In a preprocessing step taking place directly before the path optimisation is per-

formed, the minimum costs for a bixel jump with a shift of δ ∈ [−N,N − 2] are

computed:

cjump(δ) = min
i,j∈{1,...,N}

{Ti,j | j − (i+ 1) = δ}. (4.37)

Figure 4.15 (a) shows the minimum costs cjump(δ) for bixel jumps with a shift equal

to a specific amount of bixels δ for our example song. In this case, the cost function is

almost axisymmetrical, because the matrix D′ used is derived from the symmetrical

self-similarity matrices S′ and S′′, as presented in section 4.2.1. The costs tend

to increase as the distance increases, but fluctuate periodically, because jumping a

whole measure (which is often four beats as discussed in section 2.1) often produces

less perceptible cuts and has a lower associated cost.

In the next preprocessing step, the minimum cost of any bixel jump with a shift of

δ ∈ [−N,N − 2] per distance travelled is obtained after dividing these costs by the

-400 -300 -200 -100 0 100 200 300 400

c ju
m

p(/
)

0

0.5

1
(a)

shift /
-400 -300 -200 -100 0 100 200 300 400

c ef
f(/

)

0

0.02

0.04

0.06
(b)

Figure 4.15.: Values of (a) cjump(δ) and (b) ceff(δ) both plotted for all possible shifts δ
for the example song ”El barzón” from ”Los Amparito”. The matrix T was
generated with wl = wp = wr = 0 and wd = 1, leading to T = D′. δ = 0
is calculated in (a), but not in (b) and is not required for the subsequent
operations.

4.3. Path optimisation 63

respective distance |δ| (except for δ = 0 which stays undefined):

ceff(δ) =
cjump(δ)

|δ|
. (4.38)

In general, these minimum costs tend to decrease with increasing distance, which

can be seen in figure 4.15 (b).

To complete the preprocessing phase, we determine how large the cost per distance

in bixels has to be for any combination of jumps, or in other words, how efficiently

”travel” between bixels is possible at most. This leads to cfwd and cbwd representing

the minimum costs per bixel distance when jumping forwards or backwards:

cfwd = min
δ∈[1,N−2]

{ceff(δ)} and

cbwd = min
δ∈[−N,−1]

{ceff(δ)}.
(4.39)

Based on these ”maximum efficiency indicators”, the travel distance heuristic is able

to return a minimum cost given a node representing a part of a solution: We deter-

mine the amount of bixels this current solution needs to be shortened or lengthened

to eventually reach the goal node without jumping and multiply this with the afore-

mentioned costs per bixel cfwd and cbwd. For the example illustrated in figure 4.15,

both equal to a minimum cost of about 0.000184 per ”travelled” bixel. At run-

time, these values are required for algorithm 4.5 to return a lower bound for the

remaining distance from any node to a single goal node and constitutes our first

problem-specific single-goal heuristic function ĥ1 outlined in pseudo code 4.5.

Input: Considered node vi,k and goal node gi′,k′

Output: Lower bound ĥ1(vi,k, gi′,k′) for the distance between vi,k and gi′,k′
1: iproj = i′ − k′ + k
2: if k ≤ k′ ∧ iproj − i = 0 then
3: return 0
4: else if k < k′ ∧ iproj − i > 0 then
5: return (iproj − i) cfwd

6: else if k < k′ ∧ iproj − i < 0 then
7: return (i− iproj) cbwd

8: else
9: return ∞

10: end if

Algorithm 4.5: Computing the travel distance heuristic ĥ1

64 4. System components

In the first line of the algorithm, the goal is ”projected” diagonally to obtain the

position iproj at the current k that would lead to the goal node without jumps. This

theoretical position (which can be outside of this graph) can be compared to the

current node in regards to its bixel number i to determine the amount of bixels

that need to be skipped to reach the goal. In case this number of bixels is zero

(line two) and the k position of the current node is at most the goal’s k′ position,

zero is returned in line three, because not jumping at all and simply selecting the

successive bixel leads to the goal does not cost anything in almost all cases (ex-

cept when the importance function has a non-zero penalty for all bixels). Visually,

this case occurs for all nodes along the diagonal aligned to the goal node with a

k position at most that of the goal, which is illustrated in figure 4.16 in green.

bixel i

k

Figure 4.16.: The cases of the travel
distance heuristic ĥ1 il-
lustrated with differently
coloured areas of the graph
G for the case of only one
goal marked in red.

Otherwise, if the node is at a k position

where jumping to the goal is still possible,

the difference in bixel positions i − iproj is

used to distinguish whether forward bixel

jumps (lines four and five) or backward

bixel jumps (lines six and seven) are nec-

essary to reach the goal. Independant of

the direction, the distance that has to be

covered by these jumps is multiplied with

the respective minimum costs per distance

in bixels cfwd or cbwd to yield a minimum

for the remaining cost. The dark blue area

in figure 4.16 covers nodes for which jump-

ing backwards is possible and necessary to

reach the goal, while nodes in the light blue

area require a forward jump. If k > k′ or

k = k′ and the considered node is not the

goal node, the goal was ”missed” and can

not be reached any more since one can only move ”to the right” along the k axis in

the graph, which is why an infinitely large distance is returned in line 9. This is

illustrated in figure 4.16 by the yellow area.

Due to our problem definition containing a set of goals, we need to extend this single

goal heuristic to a multi-goal heuristic. As can be seen in the graph illustration in

figure 4.14, the set of goals now forms a horizontal line that is projected to the

current k value in the same manner as in the single goal heuristic, leading to two

4.3. Path optimisation 65

positions imin and imax. Note that imin ≥ imax, because a higher bixel index i leads to

the goal line at an earlier k value. Algorithm 4.6 calculates the heuristic ĥ′1(v,Gend)

as the first of our three multi-goal heuristics.

bixel i

k

Figure 4.17.: The cases of the travel
distance heuristic h1 il-
lustrated with differently
coloured areas of the graph
G with the set of goals
Gend in red.

Analogously to the single goal heuristic, we

illustrate the different cases of the multi-

goal version with differently coloured ar-

eas in figure 4.17. Similar to the last case

in the single-goal heuristic, no goal can be

reached any more if we are not at biend at

the last possible k value kmax (yellow ar-

eas), so an infinitely high distance is re-

turned in line two. The following line three

checks for the case in which the goal lies

before the current bixel and the current k

value falls into the krange (pink rectangle)

and therefore a backward jump with a dis-

tance equal to the difference between the

current bixel and the goal bixel biend leads

to the goal. If the current node does not fall

into these two categories, imax is computed

in line six and used to check if a forward

jump is needed in line seven (light blue area). Should no forward jump be needed,

imin is calculated to distinguish the case where a backward jump is needed (dark

blue area) in lines eleven and twelve from the case where no jump is necessary at all

and zero can be returned in line 14. The two cases for backward jumps in lines four

and twelve differ in that up to kmin, estimates of nodes along a diagonal in the dark

blue area are equal due to the comparison based on the ”diagonal projection”, while

nodes representing bixels behind biend in the pink rectangle have equal estimates

when located on the same horizontal line parallel to the goal nodes.

All in all, the travel distance heuristic avoids the consideration of bixel paths con-

taining wrong jumps, i.e., forward bixel jumps when the song’s duration should

be increased or vice versa, because the heuristic estimate increases for the nodes

to which those jumps lead to. However, the heuristic offers almost no information

about when to consider a jump when traversing nodes diagonally along the graph.

Both the blue and the green area exhibit equal estimates along the diagonals – this

will motivate the second heuristic of this thesis.

66 4. System components

Input: Considered node vi,k and set of goals Gend defined in equation (4.33)

Output: Minimum distance ĥ′1(vi,k,Gend) from vi,k to any goal in Gend

1: if k = kmax ∧ i 6= iend then
2: return ∞
3: else if i > iend ∧ k ≥ kmin then
4: return (i− iend) cbwd

5: else
6: imax = iend − kmax + k
7: if i < imax then
8: return (imax − i) cfwd

9: else
10: imin = iend − kmin + k
11: if i > imin then
12: return (i− imin) cbwd

13: else
14: return 0
15: end if
16: end if
17: end if

Algorithm 4.6: Computing the travel distance heuristic ĥ′1

Jump necessity heuristic While the travel distance heuristic is concerned with

avoid forward jumps when the input track should be extended and vice versa, it

does not specify where along a diagonal of nodes the jump should occur. The jump

necessity heuristic is added as a complement in case a jump is necessary, which does

not change in its estimate across different k with the same bixel, but rather across a

diagonal – this should prevent the A* algorithm from traversing a whole diagonal of

the graph despite the possible necessity to jump earlier due to the potentially high

cost of jumps with origins near the end.

In a preprocessing step, the minimum cost of jumping from any bixel bi, i ∈ {1, . . . , N}
to any other bixel (except the successor as this is not considered jumping) is calcu-

lated:

corig(i) = min
j∈{1,...,N}

{Ti,j | j 6= i+ 1}. (4.40)

For the song ”El barzón” from ”Los Amparito”, the values of this function are plotted

in figure 4.18 (a). Large values at the end of the song are especially noticeable. The

jump necessity heuristic exploits this fact to prevent the pathfinding process from

including such bixels near the end as jumping away from this region is costly.

In the next step, the minimum costs for jumping with a varying interval [i, j] of

4.3. Path optimisation 67

(b)

bixel j
100 200 300 400

bi
xe

l i

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bixel i
0 100 200 300 400

c or
ig

(i
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(a)

Figure 4.18.: Values of (a) corig(i) plotted for every bixel bi and (b) cinter(i, j) visualised
with a heat map that focuses on the values between 0 and 0.1 (the white
area is outside of the function’s domain) and assigns i to the vertical and j
to the horizontal axis. In both illustrations, the input song is ”El barzón”
from ”Los Amparito”. The required matrix T was generated with wl =
wp = wr = 0 and wd = 1, leading to T = D′.

possible bixel origins are stored for all i, j ∈ {1, . . . , N} with i ≤ j after calculating

them according to the following formula:

cinter(i, j) = min
i≤b≤j
{corig(b)}. (4.41)

The result of cinter(i, j) describes the minimum cost of all bixel jumps whose origin

bixel’s index is in the [i, j] interval. It can be accessed in constant time when

executing the A* algorithm, because it was precomputed and saved. For our example

song, the function is illustrated with a heat map in figure 4.18 (b). To make the

generally low values more distinguishable, a large number of different colours is used

for the range [0, 0.1], while the remaining values are coloured with a mix of orange

and red. The white area does not belong to the domain of the function cinter due to

the restriction i ≤ j.

At runtime, the jump necessity heuristic can be evaluated for the case of multiple

goals by executing algorithm 4.7, making use of the function cinter to obtain the

minimum costs of jumping out of the considered bixel range.

At first, the projected bixel positions imax and imin are calculated in lines one and

two. The following conditional statements in lines three to six cover the cases in

which the cost is either zero or infinitely high and are semantically equivalent to

68 4. System components

Input: Considered node vi,k and set of goals Gend defined in equation (4.33)

Output: Minimum distance ĥ′2(vi,k,Gend) from vi,k to any goal in Gend

1: imax = iend − kmax + k
2: imin = iend − kmin + k
3: if imax ≤ i ≤ imin ∧ i ≤ iend then
4: return 0
5: else if k = kmax ∧ i 6= iend then
6: return ∞
7: else
8: klast = k +N − i
9: ilast = i+ min{klast, kmax − 1} − k

10: return cinter(i, ilast)
11: end if

Algorithm 4.7: Algorithm computing the jump necessity heuristic ĥ′2(v,Gend)

those used in the travel distance heuristic. Should the considered node not belong

to one of these cases, a path to a goal exists, but a jump is necessary to reach

that goal. To determine the minimum costs of jumping in this case, the interval

of possible jump origins is computed in lines eight and nine: In line eight, the k

value at which the last bixel would be reached when starting from the considered

node vi,k and making no jumps called klast is determined. With this information, the

range of k values at which we have to jump to reach the goal starts at the current

position k and ends at either klast, because jumping is inevitable at the last bixel,

or at kmax− 1, because there are no goals reachable any more after that. Whichever

possibility arises first determines the last position at which jumping allows us to

reach the goal. Therefore, we take the minimum of these positions and use it to

compute ilast in line nine representing the corresponding bixel at this position that

would be reached if no jumping had yet occurred (again a ”diagonal projection”).

Finally, equipped with the knowledge that at least one jump has to be performed at

k′ ∈ [k,min{klast, kmax − 1}] whose origin is a bixel with index between i and ilast,

inclusively, we return the minimum cost for such a jump in line ten, which is possible

in constant time as the function cinter was precomputed.

Jump combination heuristic The last heuristic of the total of three developed in

this thesis is called jump combination heuristic. Generally speaking, it extends the

travel distance heuristic to yield a more powerful heuristic with distance estimates

that are at least as high, if not higher. Again the total shift required to reach the

goal and the minimum associated cost cjump(δ) for a jump with a specific shift δ

from equation (4.37) is used, but this time the possible combinations of jumps with

4.3. Path optimisation 69

different shifts that sum up exactly to the required total shift are analysed and their

minimum cost determined. As an example for one of these combinations, jumping

δ = 10 bixels forward can be achieved by jumping five bixels forward two times, or

by jumping 15 bixels forward and then jumping backward with a shift of −5. Over

all possible combinations, the optimal combination of jumps with least total cost

must be computed.

A way to phrase and solve this problem is by representing it as an integer linear

program (ILP) [32]. Let xi ∈ N0 with i ∈ {−N, . . . , N − 2} be the decision variable

indicating how often a bixel jump with shift i is selected to achieve the total shift δ.

Then the integer linear program minimising the total cost of all selected bixel jumps

can be written as

minimise
N−2∑
i=−N

cjump(i)xi

subject to
N−2∑
i=−N

i · xi = δ,

and ∀ i ∈ {−N, . . . , N − 2} : xi ≥ 0.

(4.42)

The summation constraint ensures that the resulting position in the graph is changed

exactly δ bixels after performing all the jumps encoded in the xi variables. Finding

the optimal solution to this ILP for a specific δ yields a lower bound for changing

the length of the solution by δ bixels. Theoretically, this ILP can be solved for

every value of δ that is needed while path optimisation is performed and the jump

combination heuristic can use its solution to provide a lower bound for the distance

to a goal in a similar fashion to the travel distance heuristic by determining the

interval of possible δ values that would lead to a goal without any further jumps

and selecting the minimum associated cost of them. In practice, solving an ILP

takes far too much time to be feasible to use as part of a heuristic – the time needed

to determine the optimal solution for all considered nodes exceeds the time saved

by not having to visit some nodes and thus actually increases the overall runtime.

Selecting and combining heuristics The three heuristics outlined above were each

conceived in an attempt to provide an admissible and consistent heuristic that pro-

vides a good estimate to reduce the total amount of considered nodes as much as

possible. Although the jump combination heuristic is better in that regard com-

pared to the travel distance heuristic, yielding an estimate at least as high for all

70 4. System components

possible inputs and sometimes an even higher one, the complexity of calculating

the heuristic itself has to be taken into account. To avoid causing a high overhead

to the A* algorithm, the heuristic should be computable in O(1) at runtime. This

renders the powerful jump combination heuristic unusable in practice, as the ILP

defined in (4.42) has to be solved for every occurring value of δ, causing a higher

overall computation time than without a heuristic. Additionally, this computation

can not be executed during the preprocessing stage in section 4.2 to retrieve the

ILP solutions in constant time during path optimisation, as the range of potentially

required δ values depends on the theoretically unbounded kmax, which can not be

evaluated before the user selects a target length specification trange.

The travel distance and jump necessity heuristics are not only computable in con-

stant time for every node thanks to the employed preprocessing, but also complement

each other and are consequently combined into one heuristic ĥ′, which will be used in

conjunction with the multiple goal A* algorithm in our music rearrangement system:

ĥ′(vi,k,Gend) = max{ĥ′1(vi,k,Gend), ĥ′2(vi,k,Gend)}. (4.43)

The maximum operator is applied to both heuristics to select the highest and there-

fore most meaningful estimate of the minimum distance between the two nodes.

4.3.6. Segmentation enforcement with tolerances

The user can define a ground truth segmentation in combination with a target

segmentation to enforce a specific structural constraint on the resulting song. For

example, annotating the occurrences of the verses and choruses in a song by assigning

them to different clusters and then only allowing the use of the choruses in the target

segmentation results in a new song exclusively containing parts from the choruses of

the original song. This section focuses on how the target segmentation is enforced

in the context of the music restructuring system.

At first, the ground truth segmentation constructed in section 4.2.3 in the form

of the function sground(t) is converted into a discretely parametrised function sb(i)

assigning a cluster to every bixel bi:

sb(i) = sground(bpos
i +

blen
i

2
), i ∈ {1, . . . , N}. (4.44)

As a result, the cluster of every bixel is equal to the cluster enforced at its centre.

In the previous work from Wenner [48], not only the ground truth segmentation

4.3. Path optimisation 71

is defined on a bixel-wise basis, but also the target segmentation: A bixel path p

as defined in equation (4.13) is only valid, if it additionally has a specific amount

of bixels k and the segment of every bixel bpi used belongs exactly to the cluster

specified by the target segmentation. Depending on the currently required cluster,

the used transition cost matrix is manipulated to only allow for transitions to bixels

belonging to this cluster. This formulation severely limits the amount of valid paths,

because the transition from one cluster of segments to another is forced to occur

exactly at one specific position in the bixel path. Restricting the amount of valid

paths also tends to produce solutions with higher costs and therefore theoretically

with more perceptible transitions, because paths with a lower cost cpath(p) that even

slightly deviate from the segmentation constraint are excluded.

Additionally, defining the target segmentation as a list of cluster indices constraining

the cluster of every bixel in the resulting bixel path is unintuitive for the user. Thus,

we allow the user to set points in time as segment boundaries in the exact same way

the boundaries of the ground truth segmentation can be set. The resulting target

segmentation starget(t) denotes the cluster that should be enforced at every point

in time t. Note that t is unbounded, as the first or last cluster is returned for the

infinitely large regions located before the first and after the last segment transition,

respectively.

For many applications, e.g. when creating a remix of an existing song, the positions

of the segment transitions do not need to be very exact. Consequently, we introduce

a concept for segmentation enforcement with the tolerance variables tlow and thigh,

where both represent non-negative, real numbers and tlow ≤ thigh. These allow the

resulting song to have segment transitions that deviate up to thigh seconds from

the target positions. A deviation of tlow seconds is not penalised by an increased

transition cost between the involved segments, whereas a deviation between tlow and

thigh seconds is penalised according to a linearly increasing function starting at zero

for tlow and ending at one for thigh.

Similar to the approach from Wenner [48], the segmentation enforcement is achieved

by manipulating the transition cost matrix. However, we do not make this manipu-

lation dependant on the current position in the bixel path, but rather on the current

length consisting of all previously selected bixels during path optimisation: Mathe-

matically, we model the transition costs ensuring the segmentation constraint as a

function T (i, j, t), where i, j ∈ {1, . . . , N} identify the origin and destination bixels

of the considered bixel transition and t in seconds describes the current position in

the resulting song to calculate which cluster should be enforced. Suppose t′ is the

72 4. System components

current position in the new song during path optimisation, calculated by summing

the lengths of the previously chosen bixels, including the last bixel bi. Additionally,

let the nearest required segment transition be at position tnear from segments be-

longing to the cluster cx to segments assigned to cluster cy. In the special case that

no segment transition exists at all, tnear is set to ∞, cx to the currently enforced

cluster starget(t
′) and cy stays undefined, as it is not needed. Also assume that the

next segment transition has to take place in tnext seconds, which is set to ∞ in case

no such transition exists.

We define a piecewise linear fading function ffade(t) ∈ [0, 1] that returns zero rep-

resenting a forbidden change of clusters and one if transitioning should be allowed

without an additional penalty. Values in between should result in an additional cost

that linearly depends on the distance to the segment transition under consideration:

ffade(t) =


1 if |t| ≤ tlow

thigh−|t|
thigh−tlow

if tlow < |t| ≤ thigh

0 else

(4.45)

In figure 4.19, the fade function is plotted with the default tolerance settings used in

the restructuring system. During path optimisation, the function is aligned horizon-

tally so that t = 0 represents the location of the nearest segment transition in the

target segmentation. In the near vicinity of tlow seconds, the function returns one to

indicate that no penalty is applied for jumps resulting in a change of clusters. De-

viations between tlow and thigh seconds from the specified transition incur a penalty

depending on their distance to the segment transition. If the current position and

the nearest segment transition are more than thigh seconds apart, the function re-

turns zero to only allow bixel transitions whose destinations belong to the currently

enforced cluster.

Note that setting both tlow and thigh to zero essentially simulates the method pro-

posed by Wenner [48] by not allowing any tolerance regarding deviations from the

time t (s)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

f fa
de

(t
)

0

0.5

1

Figure 4.19.: Values of the fade function ffade(t) on the vertical axis plotted against time
t on the horizontal axis with tlow = 3 and thigh = 5 seconds.

4.3. Path optimisation 73

target segmentation aside from the inevitable inaccuracies caused by working on a

bixel basis.

Mathematically, horizontally aligning the fade function ffade with respect to the

nearest segment transition at tnear is realised by using t = t′ − tnear as input.

After computing all of the variables mentioned above for the current length t′ of the

bixel path during path optimisation, the algorithm 4.8 computes the new transition

cost d = T (i, j, t′) for a bixel transition from bi to bj. Line one checks whether

the considered successor bixel bj does not overlap with the following segment, but

rather completely lies in the current segment. If this is the case, line two determines

if the current position is near enough to a segment transition that the fading concept

needs to be applied. In this case, lines three and four as well as lines seven and eight

return the normal values from the transition cost matrix T if the bixels bi and bj are

both assigned to the cluster before or after the transition. Jumping from the cluster

before to the cluster after the transition is handled in lines five and six, using the

fade function ffade with the distance to the segment transition as input to linearly

interpolate between the respective transition cost Ti,j and one to incur additional

cost, if necessary. Transitions with bixels involving any other combination of clusters

are assigned an infinitely high cost in line ten to enforce the usage of bixels whose

segments belong to the desired clusters.

If the current bixel lies completely inside the current segment and the current posi-

tion is not near a segment transition, we simply need to allow transitions involving

only bixels from the currently enforced cluster starget(t
′) in lines 13 and 14 and pre-

vent all other bixels being used by assigning infinite costs in line 16.

In case the bixel bj would overlap with one or more of the following segment tran-

sitions when appending it to the current bixel path, the enforced cluster send at the

position t′ + blen
j where the bixel path would end after appending this bixel bj is

calculated in line 20. All bixel transitions within this cluster send or the current

cluster as well as transitions from the current to this cluster send are left unchanged

in their costs and the fade concept is not used, so a segment change at exactly this

position in the bixel path can be performed without penalties in lines 21 and 22.

Every other bixel transition is forbidden in line 25. The additional exception han-

dling beginning in line 20 covers cases where a large candidate bixel bj overlaps with

the upcoming segment transition and therefore the next cluster needs to be allowed,

but the nearest segment transition is positioned before the current position t′ and

consequently the algorithm would not take this upcoming cluster into consideration.

Applying this algorithm during path optimisation every time a transition cost needs

74 4. System components

Input: Considered bixel transition from bixel bi to bixel bj, current time t′, time of
the nearest segment transition tnear, enforced clusters cx and cy before and after
the nearest segment transition, time of next segment transition tnext

Output: Transition cost d
1: if t′ + blen

j < tnext then
2: if |t′ − tnear| ≤ thigh then
3: if sb(i) = cx ∧ sb(j) = cx then
4: return Ti,j
5: else if sb(i) = cx ∧ sb(j) = cy then
6: return ffade(t

′ − tnear) Ti,j + (1− ffade(t
′ − tnear))

7: else if sb(i) = cy ∧ sb(j) = cy then
8: return Ti,j
9: else

10: return ∞
11: end if
12: else
13: if sb(i) = starget(t

′) ∧ sb(j) = starget(t
′) then

14: return Ti,j
15: else
16: return ∞
17: end if
18: end if
19: else
20: send = starget(t

′ + blen
j)

21: if (starget(t
′) = sb(i) ∧ send = sb(i)) ∨ (starget(t

′) = sb(i) ∧ send = sb(j)) ∨
(starget(t

′) = sb(j) ∧ send = sb(j)) then
22: return Ti,j
23: else
24: return ∞
25: end if
26: end if

Algorithm 4.8: Segmentation enforcement by manipulating transition costs

to be calculated leads to paths which always fulfil the given segmentation constraints,

if possible: Setting the start bixel bistart to a bixel belonging to a different cluster

than the one enforced at the beginning of the target segmentation is an example for

conflicting constraints resulting in a solution with a high cost because of inevitable

constraint violation.

An application example in figure 4.20 for this segmentation enforcement demon-

strates the effect of the tolerances tlow and thigh. When comparing the positions

of the segment transitions, the segmentation of the result produced with three and

five seconds as segmentation tolerances deviates slightly from the target segmenta-

4.4. Jump optimisation 75

Figure 4.20.: Remixing of the song ”El barzón” from ”Los Amparito” using segmentation
enforcement and a target duration of 120 seconds without tolerance. The
horizontal axes represent time. From top to bottom: Ground truth seg-
mentation containing seven segments each assigned to a different cluster,
target segmentation specifying the cluster to enforce in the result at each
point in time, resulting song and segmentation with tlow = thigh = 0, re-
sulting song and segmentation with tlow = 3 and thigh = 5 seconds. White
crosses indicate the positions of cuts resulting from bixel jumps in the
generated solution.

tion, while the result produced with zero seconds as tolerances, which is functionally

equivalent to the method from Wenner [48], fulfils the segmentation constraint al-

most perfectly. However, the increase in segmentation tolerances also leads to one

less jump and therefore possibly to a better sounding final music piece – this effect

is evaluated more comprehensively in section 5.1.4, where suitable default values for

the tolerance parameters tlow and thigh will be determined.

In the next section, we propose methods for optimising the cuts caused by assembling

the music piece according to the bixel path computed in this section.

4.4. Jump optimisation

The jump optimisation stage is concerned with assembling the final music signal

using the bixel path determined by the path optimisation stage in the previous

section 4.3. Each bixel jump in the bixel path results in a cut, whose perceived

transition quality may be improved by applying signal processing techniques in its

vicinity.

76 4. System components

One of the issues we aim to resolve in this stage are sound artefacts at the cuts that

occur when the beat positions returned by the beat tracker or imported from a file

may not be exactly accurate, deviating from the actual beat positions in the song

by fractions of a second, as discussed in section 2.4 and shown in audio example 2.6.

An approach to prevent such artefacts by correcting the inaccuracy of the detected

beat positions will be discussed in the following section 4.4.1.

Another issue often encountered during the evaluation of Wenner’s method [48] in

section 2.4 is the occurrence of loudness changes at the cut positions. The bixel

jumps responsible for these problematic cuts can be avoided using a high weight wl

for the loudness matrix L described in section 4.2.2, but that also excludes jumps

with an otherwise high quality and could thus lead to an overall reduction in output

quality. In section 4.4.2, we do not try to avoid these jumps, but instead aim to

equalise the loudness difference present at the resulting cuts by modifying the signal

itself to facilitate a smooth loudness change.

Finally, the output signal is assembled by concatenating the different sections of

the original music piece using crossfading as described in section 4.4.3 around the

cut positions to avoid cracking and popping effects and to generally smoothen the

transition even further.

4.4.1. Synchronisation

The bixel jumps generated by the path optimisation stage have to be translated

from bixel indices to precise time designations describing the exact position in the

music signal for the final assembly. Without jump synchronisation, the bixel jumps

are converted to time designations using the respective beat positions detected by

the beat tracking system: A bixel jump from bixel bi to bixel bj is translated to a

jump on the signal level from bpos
i+1 seconds to the destination at bpos

j seconds. This

section will present a method designed to synchronise these jump positions with the

goal of removing potentially occurring sound artefacts.

According to an evaluation of beat tracking systems [28], the beat tracker used in this

thesis [9] features a time resolution of 11.6 milliseconds. Combined with variations

in the tracking accuracy, a sound artefact sometimes occurs at a cut position when

using the detected beat positions for the assembling the output signal.

Such a sound artefact occurs for example in the song ”Lullaby” from ”Ghost” con-

tained in the database CC1 in table A.3, of which a short excerpt is given in audio

example 4.21 as a reference.

The audio around the cut position resulting from a specific bixel jump is given in

4.4. Jump optimisation 77

Audio 4.21.: Excerpt of the song ”Lullaby” from ”Ghost”

audio example 4.22. Notice how near the end a guitar note starts to sound and

almost immediately after starts to play again, interrupting the previous guitar note

abruptly.

Audio 4.22.: Audio produced by jumping according to the beat po-
sitions from 213.74 to 13.4 seconds in ”Lullaby” from
”Ghost”

This is one exemplary result of the beat positions being so inaccurate that the begin-

ning of the original note is mistakenly included in the output signal before cutting

to the target material. Visualising the audio example by plotting the amplitude,

which describes the sound pressure and is represented as a value in the range [−1, 1]

in this thesis, over time in figure 4.23 confirms this to be the issue: The resulting au-

dio is a combination of the audio content at the jump origin in figure 4.23 (a) located

before zero on the time axis and the audio content at the jump destination in figure

4.23 (b) beginning at zero on the time axis. Around the jump origin, the start of the

new guitar note appears as a sudden peak in the waveform at approximately −0.015

seconds. Consequently, about 0.015 seconds of audio containing the beginning of

this guitar sound are included in the result before the jump is performed. After the

jump destination however, this guitar note does not sound until about 0.015 seconds

after the cut, a fact again revealed by the appearance of the waveform. This creates

the undesired hearing impression of two guitar notes in rapid succession which was

not present in the original.

Short and loud, non-harmonic sounds like snare drum hits are especially problematic

as the final crossfading executed in section 4.4.3 is not able to create the impression

of one continuous sound in contrast to many other cases when transitioning between

harmonic notes.

To avoid these problems, a jump synchronisation method will be developed in this

section to correct the jump times. The correction does not necessarily have to

align the used jump times perfectly to the actual beat positions, but only needs

to synchronise both music signals in the vicinity of the jump with regards to their

timing, that is, the jump origin and destination should have the same position

relative to their respective actual beat position.

Lullaby

_ghost

ccMixter, track 0

2013-05-02T16:50:42

Trip-Hop

15.072578

eng -
URL: http://freemusicarchive.org/music/_ghost/ccMixter/ghost_-_Lullaby

Comments: http://freemusicarchive.org/

Curator: ccMixter

Copyright: Attribution-NonCommercial: http://creativecommons.org/licenses/by-nc/3.0/�TPE2�������_ghost�PRIV��&I��XMP�<?xpacket begin="ï»¿" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmpt

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}

Blues

7.235939

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}

78 4. System components

time (s)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

am
pl

itu
de

 (
m

on
o)

-0.2

-0.1

0

0.1

0.2
(a)

time (s)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

am
pl

itu
de

 (
m

on
o)

-0.2

-0.1

0

0.1

0.2
(b)

Figure 4.23.: Two waveforms each visualising the amplitudes of one second of audio of
the song ”Lullaby” from ”Ghost” exactly centered on the detected beat
positions. Zero on the time axis represents the beat positions at (a) the
jump origin at 213.74 seconds and (b) the jump destination at 13.4 seconds.

The delay between a detected beat position bpos
i and the actual beat position in

seconds can be modelled as a normally distributed random variable Di. Positive

values indicate a detected beat is located after the corresponding actual beat and vice

versa. Unfortunately, the deviation of this random variable cannot be determined

empirically by comparing the detected beat positions with the ground truth beat

data due to its slight timing inaccuracies caused by the human listener not always

perfectly tapping to the beat. However, we can expect an average delay of µe = 0

seconds, because detections located before and after the actual beat should occur

equally often and set the standard deviation to σe = 0.1 seconds. This value was

chosen experimentally, as it was just high enough for the synchronisation method

to be able to correct every problematic example found during the evaluation of

Wenner’s method, but not higher to avoid cases where a correction is unnecessary

but mistakenly applied regardless. The influence of σe on the behaviour of this

synchronisation method will be explained in detail later in this section.

Based on these statistical models Di of the delays, we model the synchronisation

error for a cut produced by a jump from any beat position bpos
i to any other beat

4.4. Jump optimisation 79

position bpos
j as the sum of both delays at the involved pair of beat positions with

a random variable S, where P (S = x) = P (Di −Dj = x). Positive values can be

interpreted as the amount of seconds that are unnecessarily included into the fi-

nal music piece around the cut position and negative values indicate missing audio

material, resulting in a slight perceived ”jump” as the next beat starts earlier than

expected. Considering that the probability distribution for Di is axisymmetrical,

fulfilling P (Di = x) = P (Di = −x), and applying the rule that the sum of two nor-

mally distributed random variables is again normally distributed with the total sums

of the averages and variances as parameters leads to

S ∼ N (0, 2σ2
e). (4.46)

For every given jump (t1, t2) from t1 to t2 seconds, tsync seconds of audio before

and after the jump origin and jump destination respectively are extracted from the

original music piece. We set tsync = 0.5 seconds, so that even for very slow songs with

only 60 beats per minute both audio excerpts cover at least the length equivalent

to the distance between two consecutive beats in a measure, enabling a musically

meaningful comparison. Assuming a degree of similarity between both signals at the

jump position, we detect the relative position of both signals to each other at which

the signals align best using cross-correlation [45], where values outside the signal’s

domain are padded with zeros. The result can be represented as a function r(l) of

the correlation between the two signals depending on the lag l ∈ [−2 · tsync, 2 · tsync]

describing the temporal translation in seconds which was applied to one signal. We

use the unbiased definition of cross-correlation [23] to not skew the results towards

near-zero lag values due to having more samples available for comparison.

For our example song ”Lullaby” from ”Ghost”, the unbiased cross-correlation for the

problematic jump is plotted in figure 4.24 (a). In contrast to the normal cross-

correlation, the values do not depend on the amount of lag considered and therefore

form a ”band” across the whole possible lag range. The fluctuations are a result of

the similar frequencies contained in both signals, so that moving one signal relative

to the other also produces periodicities when determining their correlation.

Afterwards, the correlation function r(l) is weighted by element-wise multiplication

with the synchronisation error model S:

rw(l) = P (S = l) · r(l). (4.47)

This step prevents lag values from being selected as reference for synchronisation

80 4. System components

lag (s)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

r(
l)

#10-3

-2

0

2

4
(a)

lag (s)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

r w
(l)

#10-7

-1

0

1

2
(b)

X: -0.02902
Y: 1.077e-07

Figure 4.24.: Optimising the jump from 213.74 to 13.4 seconds in ”Lullaby” from ”Ghost”
by calculating the unbiased cross-correlation function r(l) (a) and subse-
quent weighting resulting in the weighted cross-correlation function rw(l)
with a certain maximum rmax (b). The horizontal axes represent the lag
distance in seconds.

which are too high considering the average synchronisation error. For our example,

figure 4.24 (b) displays this weighted cross-correlation function rw(l) and exhibits

near-zero values for absolute lags |l| greater than 0.4 seconds.

The position of maximum correlation in the weighted cross-correlation function

rmax = arg max
l∈[−2·tsync,2·tsync]

{rw(l)} (4.48)

is determined and represents the amount of time that one signal needs to be trans-

lated to achieve the maximum signal similarity. This emphasises the importance of

the parameter σe, because large values increase the risk of selecting an extreme value

for rmax that actually introduces instead of removes timing errors and consequently

sound artefacts, while low values near zero prohibit larger timing corrections to the

point where the original jump positions from the path optimisation stage are always

left virtually unchanged. In figure 4.24 (b), the point on the function corresponding

4.4. Jump optimisation 81

time (s)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

am
pl

itu
de

 (
m

on
o)

-0.2

-0.1

0

0.1

0.2
(a)

time (s)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

am
pl

itu
de

 (
m

on
o)

-0.2

-0.1

0

0.1

0.2
(b)

Figure 4.25.: Result of the jump optimisation applied to the jump from 213.74 to 13.4
seconds in ”Lullaby”from ”Ghost”: (a) shows the waveform centered around
the corrected jump origin of 213.71 seconds, while (b) displays the same
waveform shown in figure 4.23 (b) centered around the jump destination.
Horizontal axes represent time relative to the optimised jump positions.

to rmax is marked with a black square and the ”X” value indicates the associated lag

in seconds.

Taking the case of a negative detected delay rmax < 0 as an example, either the jump

origin has to be positioned earlier or the destination later in order to correct this

kind of timing inaccuracy. Based on insights from music theory, setting the jump

origin or destination earlier should theoretically be preferable to setting it later, as

notes beginning at the beat positions will be fully included and not interrupted by

the cut after already starting to sound.

Consequently, we define the final jump times in seconds as

(t′1, t
′
2) =

(t1 + rmax, t2) if rmax ≤ 0

(t1, t2 − rmax) else.
(4.49)

In our example, the delay is negative (rmax ≈ −0.029 seconds) and thus the jump

origin is shifted to an earlier position, thereby leaving out the beginning of the guitar

82 4. System components

sound so that only the guitar note after the jump destination is included in the result.

Figure 4.25 displays the audio waveforms in the vicinity of the synchronised jump.

They not only look very similar, but are also very well aligned with regards to the

temporal dimension due to the jump synchronisation and lead to an imperceptible

cut even without applying the crossfading from section 4.4.3, as demonstrated in

audio example 4.26. The guitar note at the fourth beat in the second measure

Audio 4.26.: Audio produced by jumping according to the synchro-
nised jump positions from 213.71 to 13.4 seconds in ”Lul-
laby” from ”Ghost”.

near the end of the audio example now sounds exactly the same as all the other times

when this note is played, in contrast to the sound artefact at the same position in

the audio example 4.22.

In the next section, we will present the loudness equalisation method also targeted at

the sound quality in the vicinity of cuts, but focusing specifically on sudden changes

in loudness.

4.4.2. Loudness equalisation

Complementing the loudness avoidance outlined in section 4.2.2, the loudness equal-

isation stage as part of the jump optimisation process analyses the audio at the cut

position and attempts to smooth out sudden changes in loudness potentially vi-

olating the loudness continuity: If a significant loudness change is detected after

analysing the loudness function precomputed in section 4.2.2, the quieter signal is

amplified and the louder signal is attenuated to provide a smoother transition. This

is achieved by multiplying the relevant part of the signal with the appropriate ampli-

tude change function, which contains real, non-negative values leading to higher

amplitudes for values greater than one and to lower amplitudes for values lower than

one. Amplification of the signal is done carefully to avoid causing sound artefacts

when amplitudes are outside the supported range and are consequently ”cut off” and

set to the nearest possible value, a process called clipping [10]. This is achieved by

subjecting all factors in the amplitude change function to an upper bound depending

on the maximum amplitude of the signal so the resulting amplitudes never exceed

the valid range.

The maximum duration over which a loudness adjustment can occur is influenced

by a parameter tlim and the actual duration is also dependant on the ratio obtained

Blues

7.2620616

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}

4.4. Jump optimisation 83

by dividing the loudness of the quieter signal by the loudness of the louder signal,

creating longer transitions for large loudness changes and vice versa.

Relation of loudness and amplitude The method developed in this section es-

timates the loudness before and after the cut and then constructs a model based

on this information, describing how the loudness near the cut has to be changed in

order to obtain a slowly changing loudness with an imperceptible loudness differ-

ence directly at the cut position. Mathematically, this ”loudness change instruction”

is represented as a loudness change function, containing values indicating the

factor needed for multiplication with the estimated current loudness to achieve the

desired loudness.

Because the signal itself describes the amplitude over time, the relationship between

loudness and the signal amplitude has to be established to be able to apply a loudness

change function to the signal by converting it to an amplitude change function. As

discussed in section 2.1, loudness is a complex psychoacoustic phenomenon and

therefore modifying the signal amplitudes to precisely achieve a certain loudness is

no simple task.

Thus an approximative rule [39] will be used to convert any loudness change indi-

cated by a factor lc contained in a loudness change function to the corresponding

amplitude change factor ac: At first, the loudness change factor lc is transferred to

the logarithmic decibel scale by computing

dc = 10 log2 lc, (4.50)

which is then used to approximately calculate the desired amplitude change factor

ac as a relative change in sound pressure:

ac = 10
dc
20 . (4.51)

Applying this factor ac to the signal by multiplication serves to roughly achieve the

desired loudness change indicated by lc.

Reversing the process allows us to estimate the loudness change factor lc when ap-

plying a given amplitude change factor ac by first inverting equation (4.51), yielding

dc = 20 log10 ac, (4.52)

and finally inverting equation (4.50) to convert the decibel gain dc to the loudness

84 4. System components

change factor

lc = 2
dc
10 . (4.53)

We will refer to this approximative relationship between amplitude and loudness

whenever it is used in the remainder of this section.

Extracting loudness functions around the jump positions The loudness equalisa-

tion procedure explained in the following is executed for every jump (t′1, t
′
2) belonging

to the generated solution, retrieved from the previous jump synchronisation step in

section 4.4.1.

At first, the points on the loudness function l(t) from section 4.2.2 corresponding to

the jump times are identified. The two time intervals containing tlim seconds before

and after these points in time are identified and the associated parts of the original

loudness function used for the subsequent operations. We found tlim = 3 to be a

suitable value high enough to give the impression of a smooth loudness change even

for jumps with large loudness differences. If there is less audio material available

around the jump origin and destination than required by the tlim parameter due to

the jumps being too close to the beginning or end of the music piece, the jump is

skipped and the next one is processed.

For illustration purposes, we use the song ”Amsterdam” by ”LASERS” from our

database CC1 as an example throughout this section to present intermediate results

of our method after applying it to this song as well as the final result. In particu-

lar, the jump from 213.06 to 173.9 seconds derived from a specific combination of

detected beat positions will serve as an example of a bixel jump producing a large,

irritating change in loudness, which can be heard in audio example 4.27. The

Audio 4.27.: Audio produced by jumping from 213.06 to 173.9 seconds
in ”Amsterdam” from ”LASERS”.

corresponding loudness functions that were extracted according to the method ex-

plained above are visualised in figure 4.28 and reveal large differences measured in

sone. On the other hand, both functions fluctuate in a similar manner, exhibiting

local maxima and minima at mostly the same positions. This is due to the fact that

the outro features a fade-out, indicated by the decline of the green graph, and the

jump occurs a few seconds after the beginning of the outro to a position earlier in

the song that sounds exactly the same, but louder.

Blues

10.292239

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}

4.4. Jump optimisation 85

time (s)
-3 -2 -1 0 1 2 3

lo
ud

ne
ss

 (
so

ne
)

0

10

20

30

40

50

60

Figure 4.28.: Relevant parts of the loudness function for the song ”Amsterdam” by
”LASERS” extracted around the jump origin at 213.06 seconds (green) and
around the jump destination at 173.9 seconds (red). Both functions are
aligned along the horizontal axis so that the zero position indicated by the
blue vertical line represents the jump origin and destination, respectively.

Comparing loudness functions We will compare the given excerpts of the loudness

function around the jump origin and destination in order to detect sudden changes

in loudness at the resulting cut by analysing the loudness function before the jump

origin and after the jump destination. When aligning the two parts of the loudness

function with respect to the jump times as seen in figure 4.28, intersections of both

parts are particularly interesting as they represent points in time where the loudness

is equal and therefore no loudness equalisation should theoretically be necessary.

Additionally, at these moments the loudness function that exhibits greater values

than the other one changes, which is an important information used later in the

procedure.

Therefore, we detect intersections of the loudness function excerpts and abort the

process for the current jump, if an intersection is closer than tthresh seconds to the

cut position, because then no significant loudness difference can exist when jumping.

The parameter tthresh is set to tloud, which will be introduced and explained later.

If one or more intersections before the cut position exist, the nearest one is used

to restrict the considered domain by excluding the region before this intersection,

because it contains points in time where the order of the signals in terms of their

loudness was reversed. The same is done analogously with the nearest intersection

after the cut position, if it exists. When applying this step to the loudness function

excerpts depicted in figure 4.28, the intersection at about 2.4 seconds before the

86 4. System components

cut is detected and consequently used to only take the loudness values after this

intersection into account, leading to the restricted time domain visible in figure 4.29.

After this step, it is guaranteed that over the remaining time domain, one of the

loudness functions always returns values at least as high as the other one. Our

example follows this rule and for every point in time in the reduced domain exhibits

a loudness near the jump origin that is not higher than the corresponding loudness

near the jump destination.

In order to measure how jarring the loudness change is perceived at the cut, we

simplify this representation to just an average loudness lbefore present before and an

average loudness lafter present after the jump. To estimate these two averages, we

compute the mean of the values in the loudness function representing tloud seconds

before and after the cut position, because a single point on the loudness function

only represents the instantaneous loudness at a specific moment.

Determining the best value for tloud is critical, as it severely affects the results.

Averaging over a too large time frame may cause perceptible, but short loudness

changes right at the cut position to not be detected and thus not corrected, but

a too small value can lead to an excessively extreme loudness adjustment over a

long duration for such local loudness differences at the cut position. The underlying

question to answer is how many seconds into the past the hearing impression is

”integrated” by the human ear when perceiving loudness – a short sound from a

time (s)
-3 -2 -1 0 1 2 3

lo
ud

ne
ss

 (
so

ne
)

0

10

20

30

40

50

60

Figure 4.29.: Loudness functions from figure 4.28 after restricting the considered range
based on their intersections. The section of the loudness function used for
calculating lbefore is highlighted in cyan and the section used for calculating
lafter is highlighted in magenta.

4.4. Jump optimisation 87

snare drum not being perceived as loud as a long flute note in spite of an equal

sound pressure level is an example for this integration effect. Chapter four of the

”Master Handbook of Acoustics” [13] provides an answer: ”100 msec appears to

be the integrating time or the time constant of the human ear”. Based on this

information, we set tloud to 0.1 seconds and therefore set the threshold tthresh for

the minimum amount of time available before and after the jump to the same value

to ensure the presence of a sufficiently large time frame required for the averaging

operation.

In figure 4.29, the parts of the loudness functions used for calculating the average

loudnesses are highlighted. This yields lbefore = 14 and lafter = 40.4 sone and

appropriately describes the loudness change audible in audio example 4.27.

We aim to construct a loudness change function that gradually changes the loudness

around the cut position so that the loudnesses before and after the cut ideally meet

”half way” at a loudness of

lmean =
lafter + lbefore

2
. (4.54)

For our example, we obtain lmean = 27.2 sone as the optimal target loudness to

achieve at the cut position.

If the user does not want to correct the whole detected loudness difference, but only

a portion lfactor ∈ [0, 1], the loudnesses lbefore and lafter are adjusted so that only a

fraction of the detected loudness difference is actually corrected later:

l′before = lfactor · lbefore + (1− lfactor) · lmean and

l′after = lfactor · lafter + (1− lfactor) · lmean.
(4.55)

The remaining steps in the loudness equalisation method will use these adjusted

values and interpret them as the actual difference that needs to be corrected. Lower

values for lfactor consequently lead to lower differences and therefore the loudness is

adjusted less. By default and in our example, loudness equalisation is fully activated

in our music rearrangement system with lfactor = 1, resulting in no adjustment to

the detected loudnesses.

Constructing a loudness change function Given the parts of the loudness func-

tions around the cut, we construct two loudness change functions aimed at gradually

changing the loudness around the jump origin and destination so that ideally no

change in loudness can be noticed at the cut position after assembling the music

88 4. System components

signal using these modified parts of the original audio. Additionally, the duration

over which this gradual loudness change is performed should depend on the relative

loudness change from the louder to the quieter signal

lrel =
min{l′before, l

′
after}

max{l′before, l
′
after}

(4.56)

in such a way that the duration of the loudness change in both directions ttrans is

proportional to the relative loudness change:

ttrans = (1− lrel) · ftrans. (4.57)

The parameter ftrans > 0 linearly scales this duration. Additionally, ttrans is re-

stricted to be at most half as long as the lowest distance from the cut position to

either boundary of the considered time domain, which was potentially reduced due

to intersections between the two parts of the loudness function. Through subjec-

tive listening tests we found ftrans = 3 to be a suitable setting providing loudness

transitions smooth enough to not be irritating, but also not unnecessarily long. For

example, a sudden doubling in loudness at a cut (lrel = 0.5) is smoothed with a

loudness change over a total of 2 · ttrans = 3 seconds. In the example presented in

figure 4.29, we obtain lrel = 14
40.4
≈ 0.35, meaning the quieter signal has 35% of the

loudness of the louder signal at the cut position, and ttrans = 1.185, restricted by

the distance to the nearest intersection illustrated in figure 4.29 located about 2.4

seconds before the cut position. If the planned length of the transition ttrans is lower

than ttrash = 0.1 seconds, the corresponding jump is skipped and the next jump is

processed.

After the duration of the loudness change was determined, the next phase of the

loudness equalisation procedure is concerned with the possible amplification of the

quieter signal and setting the center of the loudness change accordingly. The loud-

ness change should not necessarily be performed both before and after the jump to

an equal degree due to potential clipping when amplifying the quieter signal. In-

stead, the center position of the intended loudness change is moved to incorporate

more of the louder signal and less of the quieter signal, if more attenuation can be

applied than amplification. This technique aims to ensure the loudness is changed

equally fast over time.

Because the quieter signal has to be amplified, clipping can occur when the result-

ing amplitude is out of the supported range and is consequently set to the closest

supported value. Clipping introduces unpleasant and distortions in the signal and

4.4. Jump optimisation 89

should consequently be avoided. In this thesis, the amplitudes of the signal are

represented as real numbers in the range [−1, 1] and for the upcoming calculation,

we assume a stereo input music signal that is defined by two functions a1(t) and

a2(t) returning the amplitude over time for both the left and the right channel,

respectively. For any other number of channels, the principle shown below works

analogously. To prevent clipping, the possible amplification of the quieter signal at

the cut position is limited to a maximum value amax ≥ 1 calculated by identifying

the highest absolute amplitude in the quieter part that is potentially amplified:

amax =

mint∈[t′1−ttrans,t′1]{ 1
|a1(t)| ,

1
|a2(t)|} if l′before ≤ l′after

mint∈[t′2,t
′
2+ttrans]{ 1

|a1(t)| ,
1

|a2(t)|} else.
(4.58)

This restriction ensures that amplifying the signal does not result in amplitudes

outside of the valid range. Note that amax represents an amplitude change factor and

not any kind of loudness unit. Consequently, we convert amax to a loudness change

factor lmax ≥ 1 according to the equations (4.52) and (4.53). For the problematic

jump in the song ”Amsterdam” visualised in figure 4.29, the maximum absolute

amplitude is 0.3715 and leads to amax ≈ 2.69 and lmax ≈ 1.82, meaning the loudness

of the quieter signal can approximately increased by a factor of 1.82 without causing

clipping.

Afterwards, the loudness at which both signals should theoretically converge to at

the cut position is calculated, depending on how much amplification is possible:

lconv = min{lmean,min{l′before, l
′
after} · lmax}. (4.59)

Ideally, this ”convergent loudness”should be exactly the mean lmean of the loudnesses

before and after the jump – this is always the case when the quieter signal can be

amplified as much as required without clipping. Otherwise, the loudness equalisation

method takes into account the fact that the loudness can not be equally corrected

both before and after the jump and adapts by attenuating the louder signal more

to make up for the limited amount of possible amplification of the quieter signal.

Both loudness change functions will be constructed so that the loudness of the part

before the jump and the part after the jump meet at the loudness lconv, which equals

to ca. 25.38 sone for our example.

To ensure the loudness is changed more or less equally fast across the whole transi-

tion, its position is moved tcorr seconds away from the cut position in the direction

of the louder signal in case less than the required ideal amount of amplification can

90 4. System components

be realised, i.e., if lconv < lmean:

tcorr =
lmean − lconv

lmean −min{l′before, l
′
after}

· ttrans. (4.60)

Amplification is not possible as much as ideally required in our example with a jump

from a quiet to a loud part (or mathematically formulated, lconv ≈ 25.38 < lmean =

27.2), so the loudness change functions are not centered on the jump times but

rather at tcorr ≈ 0.16 seconds after the cut – because more attenuation is performed

than amplification, the attenuation after the cut is distributed over a longer period

of time than the amplification before the cut.

As a result, the time domains of the loudness change functions around the jump

origin and destination are given by

[tbefore, t
′
1] = [t′1 + t′corr − ttrans, t

′
1] and

[t′2, tafter] = [t′2, t
′
2 + t′corr + ttrans] where

t′corr =

tcorr if l′before ≤ l′after

−tcorr else.

(4.61)

Within these intervals, both loudness change functions are constructed according to

the following steps: At the jump origin and destination, the loudness change factor

returned by the loudness change function should be lconv
l′before

and lconv
l′after

respectively,

because it indicates the factor required to obtain the ”convergent loudness” lconv at

the cut when given the respective estimated loudness before and after the jump.

We interpolate between these factors and one (representing no change) according to

interpolation functions calculating the area enclosed by both parts of the loudness

function around the cut position based on the difference function

ldiff(t) = |l(t′1 + t)− l(t′2 + t)|, t ∈ [t′corr − ttrans, t
′
corr + ttrans], (4.62)

for which t = 0 is aligned at the cut position. This difference function is used to

4.4. Jump optimisation 91

define the interpolation functions within the time domains from equation (4.61):

iout(t
′) =

∫ t′
tbefore

ldiff(t− t′1) dt∫ t′1
tbefore

ldiff(t− t′1) dt
, t′ ∈ [tbefore, t

′
1] and

iin(t′) =

∫ tafter+t′2−t′
t′2

ldiff(t− t′2) dt∫ tafter
t′2

ldiff(t− t′2) dt
, t′ ∈ [t′2, tafter].

(4.63)

The functions return values in the range of [0, 1] and describe the weight of the

respective loudness change factors lconv
l′before

and lconv
l′after

at every point during the loudness

change before and after the cut. In contrast to a simple linear function, the loudness

change is applied more intensively in regions where the loudness differs more and

vice versa. This design should theoretically cause the loudnesses around the cut

position to align more closely and produce a smoother transition. We consider a

cut from a quiet to a loud part in the following example. If the music directly

after the jump is significantly louder than half a second later, the interpolation

function iin will stay near one after the cut position for longer than a simple linear

interpolation. Consequently, a high attenuation is retained longer, and in exchange

returns to zero faster as soon as the music is quieter again and therefore similar

to the corresponding audio at the jump origin. For our exemplary jump contained

time t' (s)
212 212.2 212.4 212.6 212.8 213

i ou
t(t

')

0

0.2

0.4

0.6

0.8

1
(a)

time t' (s)
174 174.2 174.4 174.6 174.8 175 175.2

i in
(t

')

0

0.2

0.4

0.6

0.8

1
(b)

Figure 4.30.: (a) Interpolation function iout(t
′) assigning a weight to the loudness change

factor lconv
l′before

for every time point t′ within the interval before the jump from

equation (4.61) and (b) interpolation function lin(t′) behaving analogously
with the loudness change factor lconv

l′after
for every time point t′ within the

interval after the jump destination from equation (4.61).

92 4. System components

in audio example 4.27, the interpolation function iout designed for the correction

before the jump is visualised in figure 4.30 (a) and iin responsible for the loudness

equalisation after the jump is plotted in figure 4.30 (b). Small non-linearities are

visible and originate from the enclosed area between both parts of the loudness

function, leading to fluctuations in the difference function ldiff in equation (4.62).

The loudness change functions for the jump origin and destination are defined as

lout(t) = iout(t) ·
lconv

l′before

+ (1− iout(t)), t ∈ [tbefore, t
′
1] and

lin(t) = iin(t) · lconv

l′after

+ (1− iin(t)), t ∈ [tt′2 , tafter].

(4.64)

Both functions interpolate between the respective loudness change factor required at

the cut position, which either indicates amplification or attenuation, and the value

one, which implies not modifying the signal. Their domains are equal to the time

intervals computed previously in equation (4.61). Based on the equations above and

the interpolation functions visualised in figure 4.30 for our example, figure 4.31 con-

tains the plots of both loudness change functions. According to the function lout, the

loudness of the signal right before the jump origin should be gradually increased over

about one second, until it reaches a maximum intended increase of approximately

82% (limited by the maximum clipping-free loudness change factor of lmax ≈ 1.82).

time t (s)
212 212.2 212.4 212.6 212.8 213

l ou
t(t

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a)

time t (s)
174 174.2 174.4 174.6 174.8 175 175.2

l in
(t

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b)

Figure 4.31.: (a) Loudness change function lout(t) returning loudness change factors for
the time before the jump origin and (b) the analogous loudness change
function lin(t) concerning the signal directly after the jump destination.

4.4. Jump optimisation 93

In contrast, the function lin indicates the necessity of reducing the loudness in the

signal directly after the jump destination to about 60% of the original loudness

before slowly returning the loudness to original levels.

In the next step, the loudness change functions are extended to also modify the

parts of the audio signal that are only audible due to the crossfading employed in

section 4.4.3, namely the sections directly after the jump origin and directly before

the jump destination. Simply replicating the value present at the border of the

respective loudness change function is sufficient for this extension process.

Applying the loudness change function to the signal The loudness change func-

tion from equation (4.64) can not yet be applied to the audio signal by multiplica-

tion, because the change is given as a relative loudness factor and not an amplitude

change factor. Therefore, the loudness change functions are converted to functions

approximating the required decibel gain using the formula in 4.50. From these deci-

bel gain functions, the amplitude gain functions can be derived according to the

formula 4.51.

Afterwards, both loudness changes are applied by multiplying the corresponding

amplitude gain function with all channels of the audio signal at he jump origin and

the jump destination, respectively. The two resulting audio snippets are used to

assemble the output song by crossfading them in the following section 4.4.3.

Finally, applying the loudness equalisation method from this section in its entirety

to the problematic jump in our introductory audio example 4.27 leads to audio

example 4.32.

Audio 4.32.: Audio containing the jump from 213.06 to 173.9 seconds
in ”Amsterdam” from ”LASERS” after applying loudness
equalisation with lfactor = 1 and the default parameters
from table A.2.

In comparison, the sudden and irritating loudness change present in the untreated

audio example is gone and instead only a slow and gradual loudness increase over

a time frame of 2 · ttrans = 2.37 seconds is present in the audio signal, making the

music around this cut position more comfortable to listen to.

To generally increase the quality of the produced cuts even further, the next section

deals with crossfading as a means to remove short sound artefacts at the cuts.

Blues

10.083262

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton12'){ocgs[i].state=false;}}

94 4. System components

4.4.3. Crossfading

When assembling the final song by concatenating different pieces from the original

according to the calculated jumps, the amplitudes present before and after a cut

originate from different parts of the music signal and therefore can be very different

from each other, creating a discontinuity in the produced signal. While the jump

optimisation discussed in section 4.4.1 indirectly increases the chance of continu-

ous amplitudes at cut positions due to the use of cross-correlation, the signal can

still contain an irregular change in amplitude exactly at the cut position, creating

a ”crackling” or ”popping” sound. For suboptimal jumps introducing changes in

instrumentation, crossfading is also useful as it smoothly fades between different

instruments to make the change less noticeable.

Again we use the song ”Amsterdam” from our database CC1, which already served

as an example in the previous section 4.4.2, for demonstration purposes. In audio

example 4.33, the effects of such problematic jumps that persist after jump synchro-

nisation can be heard in the form of a short clicking noise at the cut.

Audio 4.33.: Audio produced by the jump from approximately 24.9 to
181.6 seconds in ”Amsterdam” from ”LASERS”.

In figure 4.34, the amplitudes of the audio signal around the jump origin (a) and

the jump destination (b) are plotted and visualise the different hearing impressions

of both parts with the appearances of their waveforms. The assembly consists of

concatenating the signal before the jump origin plotted in blue and the signal after

the jump destination plotted in purple (ignoring the loudness equalisation in this

case) and produces the waveform in figure 4.34 (c), which corresponds to the audio

example 4.33. The amplitudes in the immediate vicinity of the cut position are

coloured in red and exhibit a visible ”step” or ”jump” responsible for the clicking

noise heard in audio example 4.33.

Crossfading is employed in our music rearrangement system to interpolate between

amplitudes in the vicinity of the resulting cut, effectively fading the audio located at

the jump origin out while simultaneously fading in the audio at the jump destination.

The duration tcross in seconds over which the crossfading is executed is critical,

as sounds from both signals are mixed together and can be heard simultaneously:

If the duration is too high, undesirable results sounding like two different music

pieces played simultaneously can occur while too small durations do not lead to a

correction of the sound artefacts mentioned above. We determined a total duration

Blues

2.0636725

eng -
Kosten: 0.028559. Sprung bei 1.451270s von 1.451247s nach 4.512472.Sprung bei 11.846032s von 14.907211s nach 17.356190.Sprung bei 19.404875s von 24.915011s nach 181.649705.�

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton13'){ocgs[i].state=false;}}

4.4. Jump optimisation 95

time (s)
24.88 24.89 24.9 24.91 24.92 24.93 24.94 24.95am

pl
itu

de
 (

m
on

o)

-0.5

0

0.5
(a)

time (s)
181.61 181.62 181.63 181.64 181.65 181.66 181.67 181.68am

pl
itu

de
 (

m
on

o)

-1

0

1
(b)

time (s)
19.37 19.38 19.39 19.4 19.41 19.42 19.43 19.44am

pl
itu

de
 (

m
on

o)

-0.5

0

0.5
(c)

time (s)
19.37 19.38 19.39 19.4 19.41 19.42 19.43 19.44am

pl
itu

de
 (

m
on

o)

-0.5

0

0.5
(d)

Figure 4.34.: Plots of the amplitudes in the vicinity of a jump from 24.9 to 181.6 seconds
in the song ”Amsterdam” from ”LASERS” (converted to mono for illustra-
tion purposes). (a) Audio centered on the jump origin, (b) audio centered
on the jump destination, (c) audio produced without crossfading and (d)
audio produced with crossfading.

of tcross = 0.04 seconds to be suitable, because it was just high enough to correct all

sound artefacts and any larger values would often lead to more perceptible cuts due

to the listener being able to hear the ”mixing process” as it happens.

Additionally, the weight functions used for interpolation can vary and influence the

resulting hearing impression. The simplest type of crossfade is called constant gain

crossfade [1] and uses two linear interpolation functions containing the required am-

plitude change factors for fading in and out, where any two corresponding factors

responsible for the same point in time always add up to one. This property guar-

antees the resulting amplitudes to always be in the supported range [−1, 1] and

consequently no clipping can occur. On the other hand, this type of crossfade leads

to a ”dip” in loudness near its center [1] at ca. tcross
2

= 0.02 seconds, which is es-

pecially noticeable with longer crossfade durations tcross. Constant power crossfades

eliminate this effect by using interpolation functions whose value pairs can sum up

96 4. System components

to more than one. However, this can lead to clipping problems causing clicking

and popping noises for recordings of songs with high absolute amplitudes, which we

aimed to prevent in the first place.

Because this section is concerned with solving amplitude continuity problems in the

range of a few samples constituting only a few milliseconds of audio, the slight de-

crease in loudness when using a constant gain crossfade is not audible and employing

constant power crossfading would needlessly increase the complexity of the system,

additionally forcing us to deal with potential clipping issues.

Consequently, we use a simple constant gain crossfade over a total duration of

tcross = 0.04 starting at 0.02 seconds before and ending 0.02 seconds after every

cut. We apply this procedure separately to all channels of the original music piece.

For our example song, the result of this crossfading stage is demonstrated in audio

example 4.35 and does not contain any sound artefacts near the cut. Plotting the

Audio 4.35.: Audio produced by the jump from approximately 24.9
to 181.6 seconds in ”Amsterdam” from ”LASERS” after
crossfading over tcross = 0.04 seconds at the cut position.

amplitudes of the produced signal in figure 4.34 (d) confirms the sudden jump in

amplitude highlighted in red in figure 4.34 (c) to be the cause of the sound artefact,

because the corresponding amplitudes in figure 4.34 (d), highlighted in green and

interpolated by crossfading, do not exhibit this irregularity.

Finally, the assembled output track can be optionally scaled to a specific, exact

duration using the time-scale modification explained in the next section.

4.5. Time-scale modification

From the previous section 4.4.3, we obtain a new output track in the form of an

audio signal after concatenating and crossfading different parts of the original track.

This section is concerned with changing the duration of the whole output track

after all other stages of the music rearrangement have been completed so it fulfils

the user-specified target duration with high precision.

The restructuring system proposed in this thesis is based on the concept of bixels

as the elementary building block used for output generation. As a result, the target

duration specified by the user can not be exactly fulfilled when no sufficient tolerance

is set, but only approximately achieved with deviations of up to a bixel’s length. In

some usage scenarios, like creating background music for a film or an advertisement,

Blues

2.0636725

eng -
Kosten: 0.028559. Sprung bei 1.451270s von 1.451247s nach 4.512472.Sprung bei 11.846032s von 14.907211s nach 17.356190.Sprung bei 19.404875s von 24.915011s nach 181.649705.�

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton14'){ocgs[i].state=false;}}

4.6. User interface 97

more precision is desirable, if not mandatory. Therefore, the user can optionally

enable the ”accurate mode”, which activates the application of a time-scale modifi-

cation to the output track to scale it exactly to the desired length.

Time-scale modification was already presented as a related approach in section 2.2

and constitutes an optional addition to the end of the system’s processing pipeline.

The input to this stage consists of the generated music signal of length tres along

with the target duration ttarget given by the user.

A positive scaling factor needed for a time-scale modification algorithm is calculated,

representing the relative change in duration to achieve the target duration:

fscale =
ttarget

tres

. (4.65)

Values greater than one indicate the song has to be lengthened, while values less

than one imply the song has to be shortened to fulfil the duration requirement.

A plethora of algorithms for time-scale modification exist, of which the authors in [12]

give an overview and also implement some of the well-known ones in their ”TSM

Toolbox” for MATLAB that we also employ in our music rearrangement system.

By default, the WSOLA algorithm [43] is executed with the scaling factor from

equation (4.65) as input if the user requires the song to fulfil the target duration

with high precision. Although there is currently no option in the user interface of

the music rearrangement system to select between different algorithms, as time-scale

modification is not the focus of this thesis but only a small addition, this could be

easily added if different algorithms are desired for different songs.

The upcoming section presents the user interface of the developed music rearrange-

ment system.

4.6. User interface

The user interface of our music rearrangement application has to provide access to

all features presented in the previous sections and also needs to be able to visualise

and play the input and output songs. Therefore we decided to use the cross-platform

C++ framework ”JUCE” [35] for the implementation of the user interface, because

it provides many functions related to handling audio input and output needed in the

context of a music rearrangement system. Additionally, the ”dRowAudio” module

for JUCE [37] was utilised, as it allows to display waveforms for audio signals and

interact with them through an audio player.

98 4. System components

We will outline a typical workflow with our application in the remainder of this

section and present the involved interface elements.

At first, the user selects the input track and then decides between importing external

beat data from a file or using the automatic beat tracker from section 4.1 to detect

the beat positions. Afterwards, the preprocessing stage is executed to generate

the required loudness function, the transition cost matrices and the first automatic

segmentation according to section 4.2. Upon completion, the application enters its

first stage, where the ground truth segmentation can be edited.

Original segmentation stage A screenshot of the user interface in this stage with

the song ”Amsterdam” from ”LASERS” opened can be found in figure 4.36. On the

upper left hand side, the permanently available standard controls are shown. A track

can be loaded and a produced music piece can be exported to an audio file. The

current settings can be saved in the form of a project file, containing all necessary

information to describe the current state of the application. Saved project files can

Figure 4.36.: Screenshot of the user interface for the music rearrangement system in the
segmentation stage, allowing the user to edit the ground truth segmenta-
tion.

4.6. User interface 99

be loaded at a later point in time to continue working on a track without losing any

progress. In order to play back audio, it can be necessary on some computers to

configure the audio devices in the audio settings menu, which opens after clicking

the ”Audio settings” button. The large ”Play/Pause” button starts and pauses the

current audio playback, while the slider above controls the volume.

During the original segmentation stage, the user can manipulate the slider with

two knobs in the area titled ”Preprocessing” to change the possible range Crange for

the number of clusters C introduced in section 4.2.3. Upon releasing the mouse

after dragging the slider, a new segmentation for the original song is calculated

immediately and then displayed on the upper right hand side: The original audio

is illustrated by a waveform and each segment is highlighted using colours that

each represent their cluster membership. Should a correction of this automatic

segmentation be necessary, the user can drag the segment transitions to change the

location of the segments, or alternatively right click the transition for a context menu,

which is opened for the last segment in the screenshot as an example. The user is

then able to assign the selected segment to a different cluster (represented by the

colour) and also delete the segment completely – in this case, the previous segment

is automatically extended to cover the time interval of the removed segment. After

clicking the ”Confirm” button in the lower left corner, the current segmentation is

confirmed as the ground truth segmentation sground and considered as constant for

the following rearrangement stage.

Rearrangement stage After completing the original segmentation stage, the user

can edit all constraints in real-time and generate a new solution based on these

constraints with the path optimisation algorithm from section 4.3, as illustrated in

figure 4.37. The constraints and additional parameters for jump optimisation and

time-scale modification are listed on the left hand side in the area titled ”Parameters”.

From top to bottom, the first settings define the trange with the target duration ttarget

and the duration tolerance ttol in seconds.

Next, the weights for the importance function I(i) and the loudness matrix L can be

set. If their sum is below one, the difference to one is used as the weight wd for the

transition cost matrix D′ regarding timbre. Otherwise, both values are summed and

normalised to one before they are used as weights wp for the importance function

and wl for the loudness matrix, while the weight wd is set to zero. This method

enables the user to intuitively set three weights with just two sliders.

Continuing with the list of parameters, the repetition avoidance parameter wr is

100 4. System components

Figure 4.37.: Screenshot of the user interface for the music rearrangement system in the
rearrangement stage, enabling the user to generate a new music piece from
the original piece based on the different constraints.

followed by the intensity factor lfactor of the loudness equalisation method. All sliders

mentioned above support the direct input of exact values after clicking on them in

addition to the expected dragging functionality. The jump synchronisation, the

time-scale modification to fulfil the target duration with high precision and the

segmentation enforcement can each be toggled on or off with radio buttons below.

Finally, the segmentation tolerances tlow and thigh can be set at the bottom.

For the main screen space, we will again present each interface element from top to

bottom and refer to them using the numbers on the right hand side. The original

audio with the fixed ground truth segmentation is displayed at the top (1) as well as

a green and a red bar that can be dragged to the desired start and end position tstart

and tend. Directly below, points in the black area (2) can be created and moved

around to model the importance curve that uses the same time axis as the display of

the original audio and is translated into the bixel-wise importance function I(i) for

the path optimisation stage. The higher the importance curve is located at a specific

point in time, the less penalty is induced by including the corresponding bixel in

4.6. User interface 101

the solution. In our example, the audio between approximately the one minute

and 25 seconds mark and one minute and 50 seconds is less likely to be included

in the final result. The same principle applies to the section assigned to the blue

cluster near the end of the music piece. Under the importance curve, we placed

the display of the editable target segmentation starget(t) (3), where new segments

can be freely created and existing ones moved, modified and deleted similar to the

ground truth segmentation in the previous original segmentation stage, except for

being restricted to the already defined set of clusters. Its timeline always covers the

time interval between zero and the current target duration and updates whenever

the target duration is changed. The fourth horizontally aligned display (4) depicts

the waveform of the generated music piece along with the resulting segmentation.

Playing back the result starting at any point in time only requires a click at the

corresponding position in the display followed by the activation of the ”Play/Pause”

button. Additionally, white crosses on the waveform indicate positions of cuts to

make them easy to locate and play back.

Notice that the active segmentation enforcement with tolerances causes the target

segmentation above (3) to roughly match the result segmentation (4), visible by the

matching pattern of colours in both displays.

The visualisation in the lower right (5) contains a white graph describing the path

that the result takes through the original song: The horizontal axis corresponds to

the time axis of the result and the vertical axis describes the position in the original

song, causing unaltered playback of original pieces to form a diagonal line and jumps

to manifest itself as discontinuities in the plot in the form of vertical lines. When

playing back the result, the red dot continually moves along this graph to the right

on the horizontal axis and indicates the current positions in the result and in the

original music piece.

Finally, a list of metrics to evaluate the output quality is displayed at the bottom (6),

of which some will be introduced and used in the following evaluation section 5.

Users can adjust the parameters to their liking and generate a new result at any

time by clicking on the button in the lower left corner.

This concludes the presentation of the proposed music rearrangement system. In

the following section, the system will be evaluated concerning a range of different

aspects.

5. Evaluation

In this section, we will evaluate the music rearrangement system proposed in the

previous section 4 regarding a range of different aspects.

The evaluation consists of an automatic evaluation as well as a listening study. In

the automatic evaluation presented in section 5.1, several components of the system

are tested using automatic procedures. Because running these tests does not require

user interaction and can therefore efficiently cover a wide range of test cases, an

effort was made to evaluate as many features of the system as possible with this

method.

On the other hand, one can argue that the main criterion for evaluating a music

rearrangement system is the perceived sound quality of the produced music pieces.

Due to the jump-based approach, the output tracks consist of unmodified sections

of the original tracks except in the vicinity of the cut positions, where sometimes

the audio signal is changed by the jump optimisation stage from section 4.4. As a

result, the sound quality of the cuts represents the critical factor for determining the

overall output quality. Consequently, we conducted a listening study that presented

a series of music excerpts containing cuts generated by the system and asked the

participants to rate their quality according to different aspects. The results of this

listening study are discussed in section 5.2.

At first, we will begin with describing the automatic evaluation.

5.1. Automatic evaluation

Many components of our music rearrangement system are suited for an individual

automatic evaluation, because appropriate metrics can be defined to evaluate the

quality of their generated results.

One of these automatically evaluated components is the estimation of the optimal

path’s length from section 4.3.2: In section 5.1.1, we automatically determine if

a better solution outside of the estimated krange exists by computing the solutions

associated to all theoretically possible values of k. If that is the case, our estimation

104 5. Evaluation

method failed to find the optimal solution, otherwise it succeeded. For a large

number of test cases, we compute the percentage of successes and use it to evaluate

the estimation algorithm, as this percentage should be similar to the percentage

indicated by the given parameter pmin.

The multiple goal A* algorithm presented in section 4.3.5 is evaluated with and with-

out employing heuristics in section 5.1.2 regarding its average runtime and how it

depends on different parameters. Additionally, we compare it to our implementation

of the dynamic programming approach from Wenner [48].

Repetition avoidance was introduced as a user constraint in section 4.3.4, designed

to avoid the repetition of short segments in the output track. We will propose a

metric to estimate the level of annoyance that a generated solution would evoke in

a listener to allow for the automatic evaluation in section 5.1.3.

Finally, the segmentation enforcement with tolerances presented in section 4.3.6 will

be automatically evaluated in section 5.1.4. As part of the evaluation, the parameter

space defined by the two tolerance parameters tlow and thigh is explored using a range

of different settings between zero and ten seconds and their effects on the generated

solution are discussed.

Database and setup For the automatic evaluation procedures, a set of test cases,

where each case specifies certain inputs to the music rearrangement system, needs

to be defined and subsequently executed. These inputs consist of a music piece as

well as a set of user constraints. Because the automatic evaluation can process a

large number of test cases in little time, a large set of test cases was created in an

effort to cover a wide range of application scenarios by selecting music from many

different genres as well as many different settings for the user constraints.

We extended the music database CC1 listed in table A.3 by including particularly

long tracks in order to measure the runtimes of the multiple goal A* algorithm

in section 5.1.2 more extensively, resulting in the database CC2 with 59 tracks

listed in table A.4. The additional music pieces have an average duration of 496

seconds, while the average length of all music pieces in the CC1 database is about

215 seconds. Again, the tracks from this database and their genres are sourced from

the Free Music Archive [49] and belong to different musical styles.

The settings for the user constraints cover a range of target durations ttarget ∈
{60, 120, . . . , 1200} without any additional tolerance (ttol = 0), where all values

represent seconds. We did not employ tolerance to avoid cases in which the original

track does not have to be modified at all, because its duration already fulfils the

5.1. Automatic evaluation 105

desired target duration trange. For each of those 20 desired durations, we create one

test case that features segmentation enforcement and one test that does not. When

enforcing a segmentation, the ground truth segmentation used is the result of the

automatic segmentation with the default range of clusters Crange = [3, 5] and the

target segmentation is equivalent to the ground truth segmentation, but scaled on

the time-axis to the respective target duration ttarget. The remaining user constraints

are set to their default values.

All in all, the 59 tracks in the database CC2 in combination with the 20 target

durations and the activation or deactivation of segmentation enforcement yield a

total of 59 · 20 · 2 = 2360 test cases covering a wide range of application scenarios.

We will refer to this set of test cases as the standard test set in the following

sections, beginning with the automatic evaluation of the path length estimation.

5.1.1. Estimating the path length a priori

In section 4.3.2, a method to estimate the path length before executing the path

optimisation procedure was developed that determines the range krange in which the

number of bixels of an optimal bixel path is likely to fall into. Setting the parameter

pmin ∈ [0, 1) to a specific probability should guarantee the probability of finding

an optimal solution within the resulting krange to be at least as high as pmin. This

guarantee will be put to the test in this section.

For every test case in the standard test set, we first determine the optimal bixel path

by setting krange = [2, k′limit + 2] and thus taking every possible number of bixels into

account. Afterwards, we employ the path length estimation multiple times using

0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99 as probabilities for pmin (with the intention of

exploring the most promising probabilities near one more extensively and leaving

out the lower range) and determine the best solution within the respective resulting

range krange. If this solution has a higher associated cost than the optimal solution,

it is suboptimal and we represent this failure with a value of 0. Otherwise, we

assign the value 1 to indicate a success. Averaging these values over all experiments

conducted with the same specific value of pmin results in an approximation of the

actual probability of finding the optimal solution, which we call empirical success

probability.

The results for our standard test set are shown in figure 5.1. In particular, fig-

ure 5.1 (a) visualises the empirical success probability for a given setting of pmin and

demonstrates that the previously mentioned guarantee is satisfied by our system:

The empirical success probability is always as least as high as the probability defined

106 5. Evaluation

92.67% 95.60% 98.20% 99.04% 99.87% 99.92% 99.96%

0.5

0.6

0.7

0.8

0.9

1.0

0.50 0.60 0.70 0.80 0.90 0.95 0.99
pmin

A
ve

ra
ge

 e
m

pi
ric

al
 s

uc
c.

 p
ro

b.

(a)

0

200

400

600

0.50 0.60 0.70 0.80 0.90 0.95 0.99
pmin

A
ve

ra
ge

 o
f k

m
ax

 −
 k

m
in
 +

1

(b)

Figure 5.1.: Averages of (a) the empirical success probabilities and (b) the mean of
kmax − kmin + 1 representing the number of goal nodes |Gend| plotted for
a range of values for pmin.

by the parameter pmin. One would ideally expect the empirical success probabilities

to be only marginally larger than this minimum threshold, if the statistical models

of the lengths of bixels Bn in equation (4.22) and bixel paths Lk′ in equation (4.23)

are correct, because algorithm 4.1 provably computes a krange that is as narrow as

possible while still fulfilling the minimum probability pmin. This approximate equal-

ity between the empirical success probability and the probability described by the

parameter pmin would also allow for a more intuitive selection of a suitable value

for pmin, as such a value would then resemble the actual chance of finding the opti-

mal solution. However, figure 5.1 (a) clearly depicts very high success probabilities

even for low settings of pmin. A reason for this could be that modelling the bixel

length Bn as a normal distribution does not provide a very accurate description of

the actual distribution of bixel lengths: Often, the first and last bixel of a track are

significantly longer or shorter, caused by not detecting any beats at the beginning

or at the end, for example due to silence. In such a case, the deviation µb of the

normal distribution is significantly higher than for example in figure 4.10 merely on

5.1. Automatic evaluation 107

the basis of these two bixels. Consequently, the model implies that all bixels devi-

ate from the mean much more than they do in reality. The error in this inaccurate

model propagates through every subsequent calculation in the proposed algorithm,

until the final step returns a krange that is unnecessarily ”wide” and covers the op-

timal solution with a much higher probability than estimated. Future work could

include constructing a model that represents the distribution of beat lengths more

accurately and integrating it into our own method.

The estimated range of possible lengths for the optimal bixel path krange is important

for the path optimisation process: Calculating kmax − kmin + 1 yields the number

of goal nodes, that is, the cardinality |Gend| of the set of goal nodes Gend to which

the shortest path must be found. As we will show in section 5.1.2, more goal nodes

lead to higher average computation times for the path optimisation algorithm. In

figure 5.1 (b), this number of goal nodes |Gend| = kmax − kmin + 1 is plotted for the

various values of pmin and increases more rapidly as pmin approaches one.

In conclusion, setting pmin to some value always implies a trade-off: As the probabil-

ity of finding the optimal solution increases for larger values of pmin, the number of

goal nodes and consequently the average runtime of the path optimisation procedure

also increases, as shown in the following section. We set a default value of pmin = 0.6

for our music rearrangement system, as it offers an empirical success probability of

over 95% despite the relatively low number of associated goal nodes |Gend|.

5.1.2. Path optimisation algorithms

This section is concerned with evaluating the runtime of the path optimisation algo-

rithms discussed in section 4.3.5. We compare the original approach using dynamic

programming (DP) from Wenner [48] and the proposed multiple goal A* algorithm

based on the formulation of the optimisation problem as a graph problem. The

multiple goal A* algorithm was tested in two different versions. One version (A*)

does not use a heuristic (or in other words, it uses a heuristic that always returns

zero) and the other version (A*-H) employs the problem-specific heuristic ĥ′ from

equation (4.43) also developed in that section.

All experiments were performed on a computer equipped with an ”Intel i7”quad-core

processor with a frequency of 3.4 GHz and 16 GB of RAM. For every test case in

the standard test set, the optimal bixel path was determined by executing the three

different implementations of path optimisation mentioned above while measuring

their wall-clock runtimes.

Analysing the recorded runtimes leads to the conclusion that the multiple goal A*

108 5. Evaluation

algorithm presents a successful improvement of the dynamic programming approach

in general: As an approximate average over all test cases, the multiple goal A*

algorithm without heuristics requires a computation time of 2.63 seconds, while the

dynamic programming approach needs 4.68 seconds and therefore significantly more

time. The use of heuristics for the multiple goal A* algorithm slightly speeds up the

calculation and leads to an average runtime of 2.48 seconds. Although this result

could possibly be improved even further using more powerful heuristics, it proves

the usefulness of the specific heuristics proposed in section 4.3.5 of this thesis. We

also recorded the amount of calculated transitions for every test case and found this

number to be proportional to the required runtime of both A* algorithm variants,

exhibiting a linear relationship with a very high, significant correlation of over 0.98.

On average, the heuristics reduced the amount of considered bixel transitions by

about 9%. Combining both of the aforementioned results, this reduction in the

amount of considered bixel transitions explains the reduction in average runtime

when enabling heuristics of ca. 1− 2.48
2.63
≈ 0.057 ≡ 5.7%. This percentage describing

the measured speed-up is slightly lower than the theoretically possible decrease in

runtime by 9%, as it is counteracted to a certain degree by the overhead induced by

the additional time required for computing the heuristic function ĥ′.

2

3

4

5

0.5 0.6 0.7 0.8 0.9 1.0
pmin

A
ve

ra
ge

 r
un

tim
e

(s
)

Algorithm

DP

A*

A*−H

Figure 5.2.: Average runtimes in sec-
onds for the three path op-
timisation algorithms pre-
sented in section 4.3.5, for
different minimum success
probabilities pmin.

Referring to the estimation of krange in the

previous section 5.1.1, figure 5.2 illustrates

the relationship between the minimum suc-

cess probability pmin and the average run-

time of all test cases with a certain set-

ting for pmin. Because the set of goal

nodes grows in size with increasing values

for pmin, as shown in figure 5.1, all three

tested algorithms tend to require increas-

ingly more time. However, independent of

pmin, there is always a large difference be-

tween the dynamic programming approach

coloured in red and both variants of the

multiple goal A* algorithm. Additionally,

enabling the heuristics consistently leads to a slightly lower computation time.

The runtime is not only affected by the minimum success probability pmin, but

also by the number of bixels N in the original track and the maximum number

of bixels kmax that is considered as a length of a possible bixel path. N and kmax

5.1. Automatic evaluation 109

are both approximately proportional to the duration of the original track and the

maximum target duration tmax, respectively. Variations in these variables for the

same number of bixels occur due to bixels with different lengths. Two songs of

identical length for example have a different amount of bixels N , if the beat tracker

detects a higher tempo and therefore more beats in one song than in the other. In

addition, we examined whether segmentation enforcement has a significant influence

on the average runtimes.

In the following, we analyse the runtime as a function of the length of the orig-

inal piece as well as the target duration ttarget both with and without using seg-

mentation enforcement. Note that the resulting range of target durations trange is

equal to [ttarget, ttarget] in this evaluation, because we disabled the tolerance setting

with ttol = 0, leading to tmax = ttarget and tmin = ttarget. Due to the variances in

performance for different tracks making the resulting plots of the runtime difficult

to interpret, we smoothly interpolated each function using locally weighted regres-

sion with the function loess provided by R [34]. The resulting curves are shown

in figure 5.3 and describe these interpolated, average runtimes. As mentioned in

section 4.3.5, all three path optimisation procedures have the same asymptotic com-

plexity of O(N2 kmax). This asymptotic complexity manifests itself in the behaviour

of these plotted functions: For various durations of the input track in figures 5.3 (a)

and (b), the runtimes of all three algorithms increase approximately quadratically

with the length of the original track, caused by the N2 component of the complexity.

This was confirmed after fitting a quadratic function y = ax2 + c to the three se-

ries of smoothed data points, because every fitted function exhibited a coefficient of

determination of over R2 = 98.9%, indicating it explains almost all of the variance

in the set of data points. Apart from almost equal runtimes for tracks shorter than

two minutes, both variants of the A* algorithm quickly set themselves apart from

the dynamic programming approach as the duration of the input tracks increases.

Overall, using the multiple goal A* algorithm with heuristics appears to be the best

of the three available solutions. Input tracks lasting 300 seconds or less are the

exception, where all algorithms finished in a fraction of a second, but sometimes

the dynamic programming approach was marginally faster than the variants of the

multiple goal A* algorithm. This is due to less overhead when setting up the data

structures holding the open and the closed set (like the Fibonacci heap) in compar-

ison to the simple two-dimensional array needed to store the C(i, k) values of the

dynamic programming approach.

As the target duration ttarget is proportional to the maximum considered length kmax

110 5. Evaluation

(a) (b)

0

10

20

30

200 400 600 200 400 600
Duration of original track (s)

A
ve

ra
ge

 r
un

tim
e

(s
)

Algorithm

DP

A*

A*−H

(c) (d)

0.0

2.5

5.0

7.5

10.0

250 500 750 1000 1250 250 500 750 1000 1250
Target duration t target (s)

A
ve

ra
ge

 r
un

tim
e

(s
)

Algorithm

DP

A*

A*−H

Figure 5.3.: Average runtimes in seconds for the three path optimisation algorithms pre-
sented in section 4.3.5 as a function of ((a) and (b)) the duration of the
original track and ((c) and (d)) the maximum target duration tmax. Seg-
mentation enforcement is disabled for the plots in (a) and (c) and enabled
for the plots in (b) and (d).

for a bixel path and the asymptotic complexity is O(N2 kmax), one would expect the

runtimes to increase linearly with the target duration ttarget. Figures 5.3 (c) and (d)

depict the average runtime of the algorithms for different target durations ttarget

and the mostly straight lines confirm this expected linear relationship. However,

the lines of all three algorithm variants feature a different gradient, implying the

runtime of the approach based on dynamic programming increases at a higher rate

than the runtimes of both variants of the multiple goal A* algorithm for increasing

target durations.

In conclusion, both variants of the multiple goal A* algorithm offer a reduced runtime

in comparison to the dynamic programming approach for longer input and output

tracks. This difference grows even further when increasing either the length of the

input track or the target duration.

When activating the segmentation enforcement, theoretically one would expect both

5.1. Automatic evaluation 111

variants of the A* algorithm to become faster, because many nodes do not have

to be considered as they are assigned an infinitely high cost due to violating the

segmentation constraint. However, comparing the performance between disabled

segmentation enforcement in figures 5.3 (a) and (c) and enabled segmentation en-

forcement in figures 5.3 (b) and (d) leads to the conclusion that the runtimes of both

multiple goal A* algorithms are roughly equal. Perhaps, the supposed speed-up is

cancelled out by the increased overhead from having to look up the cluster of the

bixel corresponding to a successor node, but further investigation would be required

to confirm this as the cause. Additionally, the dynamic programming approach is

faster with segmentation enforcement enabled, although the runtime should theo-

retically be independent of this factor: All of the |E| = N2(kmax−2) +N edges each

representing a bixel transition at a specific position in the bixel path are always

taken into consideration, regardless of how costly the optimal path to a node turns

out to be. A potential cause could be related to the computation of the optimal

path to the current node based on all predecessor nodes: In our implementation,

the optimum cost for every predecessor node is added to the cost of the respective

bixel transition leading to the current node. Iterating over all predecessor nodes,

this cost is computed for every node and a conditional statement checks whether

it is lower than the least known cost until this point. In that case, this cost is set

as the new minimum cost. After the iteration, the optimum cost to the current

node was determined as the minimum of the mentioned costs associated with all

predecessor nodes. Branch prediction as a processor feature may correctly assume

that none of the predecessor nodes with an infinitely high cost due to violating the

segmentation constraints are involved in the optimal path to the current bixel and

therefore evaluating the conditional statement checking for a path with less cost is

significantly faster. Further investigations should be undertaken in order to confirm

the validity of the above explanations or to uncover the actual causes.

In summary, the proposed multiple goal A* algorithm achieved lower runtimes for

longer input or output tracks than the dynamic programming approach from [48] and

almost equal runtimes for shorter input or output tracks. However, it still has the

same asymptotic complexity of O(N2 kmax): The runtime increases quadratically

with the duration of the input track and linearly with the target duration, only

with a smaller factor. Using the heuristic designed specifically for the search of the

optimal bixel path provided an additional, albeit slight, decrease in average runtime.

In the following section, repetition avoidance as a user constraint is evaluated by

observing its effects on the generated output.

112 5. Evaluation

5.1.3. Repetition avoidance

Repetition avoidance was introduced as a user constraint in section 4.3.4 and is

ideally evaluated with a study using multiple output tracks generated with the same

input track and constraints, except different settings for the repetition avoidance

parameter wr. It would then involve participants listening to these output tracks and

reporting their level of annoyance caused by the potentially occurring repetitions.

Because this would pose a large time demand on the participants and would likely

reduce the number of people willing to take part in such a study significantly, we

instead employ an automatic evaluation.

In order to rate the output quality, we design a metric estimating the expected level

of annoyance a listener would report when listening to the output track. The metric

is formulated as a function rpath measuring the repetitiveness of any bixel path p

containing k ≥ 2 indices of bixels:

rpath(p) =
1

k − 1
·

k∑
i=2

rbixel(p, i) where

rbixel(p, i) =
∑

1≤j<i,pj=pi

1

i− j
.

(5.1)

The function rbixel(p, i) models the annoyance that a specific bixel at a position i in

the bixel path p causes by computing a sum over all previous positions at which this

bixel already occurred. These positions of repetition j are measured in their level

of annoyance according to their distance in bixels i − j to the current position i.

The idea behind this computation is that repeating a bixel after a certain number of

other bixels x have been played is presumed to be approximately twice as annoying

as repeating a bixel after 2x other bixels have been played.

Overall, the metric rpath modelling the annoyance of a bixel path is calculated as the

average of the annoyance levels rbixel of all contained bixels (except the first one, as

no repetition can occur at the beginning).

Equipped with this metric, we executed the standard test set with a range of differ-

ent settings for the repetition avoidance parameter wr ∈ {0, 0.5, 1, 1.5, 2}, aiming to

explore the lower possible values starting with zero as the least possible value, and

analysed the generated bixel paths regarding their repetitiveness. Grouping all test

cases according to their value of the repetition avoidance parameter wr and comput-

ing the average for every group yields the bar plot in figure 5.4 illustrating the average

5.1. Automatic evaluation 113

values of the metric rpath for all output tracks generated with a certain setting for wr.

0.000

0.005

0.010

0.015

0.020

0.0 0.5 1.0 1.5 2.0
w r

A
ve

ra
ge

 o
f r

pa
th

Figure 5.4.: Average values of the met-
ric rpath for output tracks
generated with different set-
tings for wr.

For increasing values of wr, the estimated

repetitiveness of the results strictly de-

creased on average, demonstrating the suc-

cess of the proposed implementation of rep-

etition avoidance at least in the context of

the proposed metric. Future work could in-

clude a listening study in order to investi-

gate the ability of our metric to accurately

model the listener’s experience by compar-

ing the reported levels of annoyance to the

values of the metric. Although the average

value of the metric significantly dropped

when setting the repetition avoidance pa-

rameter from 0 to 0.5, there were diminish-

ing returns for larger values of wr, yielding

only small improvements. One possible reason could be that the penalty function in

equation (4.30) does not penalise backward jumps of slightly larger distance enough.

Another possibility is that the remaining short backward jumps are unavoidable and

are therefore included in the output despite their high cost, because they are strictly

required for an output that fulfils the user constraints: Due to the missing tolerance

ttol regarding the duration of the output, a specific backward jump of short distance

may be necessary to reach the optimal solution that minimally deviates in length

from the target duration ttarget.

In conclusion, we set wr = 0.5 as the default value in our music rearrangement sys-

tem, as it offers a significant reduction in the estimated level of annoyance, while

losing as little information as possible due to the minimisation operation in equa-

tion (4.29), where too large values are limited to the maximum value of one.

In the next section, we demonstrate the effects of the segmentation tolerances tlow

and thigh from section 4.3.6 on the output quality.

5.1.4. Segmentation tolerance

The segmentation enforcement in section 4.3.6 includes two tolerance parameters

tlow and thigh describing the amount of seconds the segment transitions of the result

are allowed to deviate from the segment transitions in the target segmentation.

A deviation of tlow seconds does not lead to a higher cost of the solution, while

114 5. Evaluation

deviations between tlow and thigh seconds are penalised with a higher cost depending

on their amount. Utilising tolerances is intended as a trade-off between the output

quality and how accurately the target segmentation is enforced, allowing for an

output track with less perceptible cuts whose segmentation slightly deviates from

the target segmentation. In this section, we will investigate some effects of these

tolerances on the resulting music pieces to determine whether this concept succeeds

in offering the aforementioned trade-off.

Because the two tolerance parameters tlow and thigh both represent an amount of

seconds as a non-negative, real number, the space of possible configurations is in-

finitely large. Therefore, we define a set of reasonable values P = {0, 2, 4, 6, 8, 10}
for both parameters and derive the set of considered configurations by selecting all

combinations from P ×P which are valid, that is, where tlow ≤ thigh. Note that the

configuration with tlow = 0 and thigh = 0 represents the segmentation enforcement

without any tolerance employed in [48]. For every one of these configurations, the

standard test set was executed.

With the generated results, we explore the influence of the tolerances tlow and thigh

on the accuracy of the segmentation enforcement and the quality of the output. We

define the measure segmentation accuracy as a metric to measure the similarity

between the target and the result segmentation, which is a real number in the

range [0, 1] computed as follows: The amount of time in which the resulting track

contains audio material from the correct cluster defined in the target segmentation

is divided by its total duration. This ratio represents the percentage of time where

the segmentation of the result matches the target segmentation. Therefore, the

value 1.0 implies a perfect segmentation of the result without any deviations from

the target segmentation and larger values are generally better. The overall audio

quality of the output track is estimated with the total cost cpath(p) of the optimal

bixel path, which consists of the sum of all bixel transition costs, and the number

of jumps in the solution. This evaluation approach relies on two assumptions to

produce meaningful results. First, the costs of the jumps as indicated by the unified

transition cost matrix T must correlate to how perceptible or irritating the resulting

cut would be for a listener. We will examine the validity of this assumption in the

listening study in section 5.2.1. Second, we presume that using less jumps tends

to produce a better track overall than a result with more jumps, because every cut

potentially leads to a degradation of the perceived quality.

Based on the above assumptions, the generated tracks can be automatically evalu-

ated. The results are shown in figure 5.5 and visualise the average values of different

5.1. Automatic evaluation 115

metrics for every considered configuration of tlow and thigh with heatmaps employing

a scale of colours for the occurring values.

Figure 5.5 (a) illustrates the average segmentation accuracy (”Seg. Acc.”) for differ-

ent tolerance configurations. Wenner’s method [48] using no tolerance in the lower

left achieved almost perfect segmentation accuracy, producing results whose seg-

mentations match the target segmentation about 99% of the time. As expected, the

segmentation accuracy declined for larger tolerance settings, but did so slowly, not

dropping below 90% even when setting both parameters to ten seconds. Although

both tolerance settings lead to a greater amount of feasible jumps, increasing thigh

also penalises jumps producing a deviation from the target segmentation, in con-

trast to tlow. This explains why the parameter thigh had a smaller influence on the

segmentation accuracy than the parameter tlow in the experiment.

In return for the lower average segmentation accuracy, the cost cpath(okopt) of the

0

2

4

6

8

10

0 2 4 6 8 10
thigh (s)

t
lo

w
(s

)

0.93

0.95

0.97

0.99
Seg.mAcc.

(a)

0

2

4

6

8

10

0 2 4 6 8 10
thigh (s)

t
lo

w
(s

)

2.5

3.0

3.5

Cost

(b)

0

2

4

6

8

10

0 2 4 6 8 10
thigh (s)

t
lo

w
(s

)

19

20

21

22

23

Jumps

(c)

0

2

4

6

8

10

0 2 4 6 8 10
thigh (s)

t
lo

w
(s

)

3.0

3.5

4.0

4.5
W.mJumps

(d)

Figure 5.5.: Heatmaps visualising the average (a) segmentation accuracy, (b) cost of
the bixel path, (c) number of jumps in the bixel path and (d) number of
wrong jumps in the bixel path for various configurations of the segmentation
tolerances tlow and thigh.

116 5. Evaluation

optimal bixel path okopt averaged over all experiments in the standard test set was

considerably lower when employing tolerances with thigh ≥ 2 compared to the con-

figuration without tolerance, as figure 5.5 (b) demonstrates. Increasing tolerance

values further decreased the total average cost slightly and steadily. Assuming the

cost Ti,j of a bixel jump from any bixel bi to any other bixel bj relates to the per-

ceived quality of the cut when concatenating both bixels, this result proves a higher

average quality of the output tracks generated with larger segmentation tolerances

compared to tracks generated using lower values for the tolerance parameters.

In addition to the estimated quality of the selected jumps, we measure the number

of jumps being included in a result on average depending on the settings for seg-

mentation tolerance and display the results in figure 5.5 (c). Without any tolerance,

the generated bixel path of a solution contained more than 23 jumps on average.

When increasing either tlow or thigh, this number decreased steadily to about 18.2

for the highest considered tolerance configuration. One reason is that fewer jumps

with a small distance have to be included in the solution to correct the positions

of the resulting segment transitions in order to align them precisely with the seg-

ment transitions in the target segmentation. In particular, sometimes a wrong jump

causing an involuntary extension of the solution when trying to shorten the original

piece or vice versa is necessary to enforce the segmentation accurately. The average

number of these wrong jumps (”W. Jumps”) serving no other purpose than fulfilling

the segmentation constraint also decreased with higher tolerances, as shown in fig-

ure 5.5 (d). We presume the decrease in the average number of (wrong) jumps to

be a positive influence on the output quality, because every jump potentially causes

an irritating cut in the result.

Considering the results of the evaluation, we set tlow = 2 and thigh = 4 as default for

our music rearrangement system, because it provided a significantly reduced cost,

only slightly reduced segmentation accuracy and a fewer average number of wrong

jumps. However, this represents only a general recommendation for the user and

can be interactively changed.

In conclusion, the concept of segmentation tolerance was successful in providing

a trade-off between segmentation accuracy and output quality, assuming the cost

of a bixel path and the number of jumps provide an indication of how pleasing

the resulting piece would be rated by a human listener. The proposed method of

enforcing a segmentation with tolerances fulfilled its purpose in the context of path

optimisation by reducing the cost of the optimal solution and the number of jumps.

As a consequence, even if the aforementioned assumptions do not prove to be true,

5.2. Listening study 117

the unified cost matrix T would need an adjustment to better reflect how a human

listener would rate the qualities of the bixel transitions, but not the method of

segmentation enforcement. This relationship between the unified cost matrix T and

the perceived quality of the respectively produced transitions will be explored in the

listening study conducted in the following section 5.2.

5.2. Listening study

This section describes the listening study conducted to evaluate the proposed music

rearrangement system regarding the quality of its output tracks. In particular, we

focused on analysing the perceptibility of the produced cuts by presenting audio

snippets containing three seconds of audio before and after a cut in an output track

to the listener and asking different types of questions regarding their quality. We

collected the required data from participants through two online surveys, where the

audio snippets could be played as often as desired and an associated question had

to be answered and submitted. In total, 28 people completed the first survey, while

the second survey had 45 responses.

The listening study investigates two different aspects of the music rearrangement

system. To evaluate the transition quality of the selected bixel jumps, the participant

had to rate audio excerpts in the following section 5.2.1 according to different musical

aspects. Each of these excerpts contained the result of a bixel jump and was not

processed with the jump optimisation stage from section 4.4 to evaluate the ability

of our system to find the bixel jumps leading to the least perceptible cuts. The

second area of interest pertains to the jump optimisation stage and whether the

application of this stage to the produced cuts has a positive influence on the perceived

transition quality. This investigation is described in section 5.2.2 and used pairs of

audio snippets each containing the same bixel jump, where only one of them was

processed with our jump optimisation algorithms, and asked listeners to select which

one of the two given audio snippets is preferred. Before discussing these areas of

evaluation more thoroughly in the following sections, we will describe the general

design of the listening study in the remainder of this section.

Used database In order to determine the possible influence that knowing a music

piece can have on the response of a listener, we selected four rather popular tracks

as well as four music pieces that turned out to be completely unknown to all of the

participants and combined them, yielding the database EVAL presented in table A.5.

118 5. Evaluation

The first four entries in this table represent the better known tracks and were sourced

from the private collection of the author, while the last four tracks are freely available

on the Free Music Archive [49] and are also contained in the databases CC1 and CC2.

To limit the time required for participating in the study to about fifteen minutes,

only the eight tracks from the database EVAL were used and also split across two

different online surveys, each including two of the more well-known tracks along

with two of the unknown tracks. Additionally, we attempted to cover a wide range

of genres despite the relatively low total number of tracks, as seen in the columns

describing the genre and subgenre of every piece.

Data generation New music pieces are required as output from the music rear-

rangement system to create an audio snippet for every cut that can be presented to

the participant of the listening study. To generate this output, we define the typical

test set as the collection of inputs for the music rearrangement system. It consists

of two settings for the target duration ttarget: One requires extending the original

piece to twice its length, while the other one demands an output half as long as

the original. Both settings for the target duration employ no tolerance ttol and are

included in the typical test set with and without segmentation enforcement, lead-

ing to four different constraint configurations each with all other constraints set to

their default values. Similar to the standard test set used for the automatic evalua-

tion in section 5.1, the ground truth segmentation is automatically determined with

Crange = [3, 5] and the target segmentation is a scaled version of the ground truth

segmentation. The database EVAL from table A.5 is selected as set of inputs for the

original music piece, resulting in 4 ·8 = 32 total configurations in the typical test set.

In comparison to the standard test set, the typical test set is considerably smaller,

because only a relatively small amount of audio data can be manually evaluated by

a human in a listening study. Despite that, the typical test set was designed in an

effort to cover the main application scenarios, including extending and shortening a

piece in combination with either using or not using segmentation enforcement.

Additional questions Complementing the main questions presented in the follow-

ing sections, we explore the possible effects of the musical education of listeners and

their knowledge of the tracks on their responses.

In both online surveys, participants had to classify their level of musical education

according to four different categories, ranging from no musical knowledge and not

playing any music instrument to being a professional musician. The following sec-

tions will refer to the levels of musical education with the numbers one to four, where

5.2. Listening study 119

a higher number implies a higher level of musical education.

The online surveys were structured according to the four original music pieces from

the EVAL database: At first, the listener was able to listen to a preview of the

original track and had to indicate whether he knows the track. Afterwards, a set of

audio snippets generated with this track as input was presented before proceeding

analogously with the next original track.

The main questions regarding the audio snippets along with an analysis of the asso-

ciated responses will take place in the following sections, starting with the evaluation

of the transition quality.

5.2.1. Transition quality

Arguably the most important criterion for evaluating a music rearrangement system

is the quality of the produced tracks. The cuts as a result of the jump-based approach

are particularly crucial, because they represent the only sections in the output that

significantly differ from the original and where discontinuities can irritate a listener.

The goal of this section is to yield insight into the following issues related to the

transition quality of these cuts: Probably most importantly, we will evaluate the

overall quality of the transitions at the cuts. Additionally, we will investigate the

effect on transition quality when changing the influence of timbre and loudness on

the matrix T used for path optimisation. This is achieved by experimenting with

different weights wd and wl for the matrix D regarding timbre from section 4.2.1

and the matrix L regarding loudness from section 4.2.2, respectively. Furthermore,

the potential effects of musical education and familiarity with the presented track

on the responses will be analysed.

Data generation and selection Due to the large number of cuts produced when

enforcing a segmentation, the configurations with active segmentation enforcement

had to be excluded from the typical test set for the purpose of this section. For

every remaining configuration in the typical test set, a set {0, 0.1, 0.2, 0.3, 0.4} of

values as weights wl for the loudness matrix L was used to produce a total of five

tracks, allowing us to analyse the effect of L on the quality of the selected jumps.

No larger values than 0.4 were used for the weight wl in order to keep the number

of produced cuts low and because it was assumed that loudness continuity does not

have a greater influence on the overall transition quality. We set wd = 1 − wl, so

the transition cost matrix T included the matrices L and D to a different degree

and all weights summed up to one, as required in equation (4.28). The loudness

120 5. Evaluation

equalisation method from section 4.4.2 was not used, as the jumps were intended

to be rated regarding their loudness continuity without any further modification in

order to focus on the influence of the loudness weight wl. From the results, an audio

snippet for every cut was generated, containing six seconds of audio centered on the

cut position.

For every track from the EVAL database, a random configuration from the test set

described above that uses the respective track was selected. All cuts corresponding

to these selected test cases were included in the listening study.

Study design The audio excerpts selected according to the previous paragraph

were presented to each participant, who was asked to rate them according to three

different aspects, as shown in figure 5.6. Every aspect had to be rated on a scale

from one to five, where higher numbers indicate a higher perceived quality. The first

aspect is the loudness continuity introduced in section 2.1, while the second aspect

covers all other factors required for an imperceptible transition, such as timbre,

rhythm and meter. Finally, the participant had to rate the overall quality of the

audio snippet. We deliberately separated the loudness continuity from all other

factors to focus on evaluating the usefulness of the proposed loudness matrix L.

Figure 5.6.: One of the questions of the online survey designed to investigate the tran-
sition quality of the music rearrangement system. An audio excerpt could
be played arbitrarily often and had to be rated according to three different
aspects on a scale from one to five.

5.2. Listening study 121

Discussion of results On a range from one to five, the average ratings for loudness

continuity, all other musical aspects and the transition quality overall were 3.56, 3.35

and 3.27, respectively. Normally, one would expect the overall transition quality to

be somewhere in between the ratings for the loudness continuity and the other

musical aspects, because both represent subcategories and in combination should

lead to a rating of the overall transition quality. However, this was not the case –

one reason could be a misunderstanding of the category ”Other”, because some of

the corresponding aspects like timbre were perhaps unknown.

Averaging these ratings over all cuts associated with a specific setting of the loudness

weight wl results in the plot in figure 5.7. For increasing weights wl starting with

zero, the produced cuts rapidly increased in their loudness continuity until wl = 0.2

and afterwards stayed at a relatively high level, as the red curve shows. This proves

the ability of the proposed loudness matrix L to capture the concept of loudness

continuity, because it leads to the selection of jumps with higher loudness conti-

nuity when its influence wl is increased. The ratings concerning all other musical

aspects (”Other”) first decreased in the process as expected, but suddenly increased

slightly for wl > 0.2. A possible explanation is that the loudness matrix L unin-

tentionally encodes some information about these aspects in addition to loudness

continuity, but further investigation would be necessary to determine the cause.

Overall, the transition quality first declined due to the decreased quality in other

3.3

3.4

3.5

3.6

0.0 0.1 0.2 0.3 0.4
w l

A
ve

ra
ge

 r
at

in
g

(o
ne

 to
 fi

ve
)

Aspect rated

Loudness

Other

Overall

Figure 5.7.: Average ratings of the loudness continuity (”Loudness”), all other musical
aspects (”Other”) and of the transition quality as a whole (”Overall”) for
different values of the loudness weight wl.

122 5. Evaluation

musical aspects, but steadily increased for larger values for wl, leading to the con-

clusion that the loudness matrix L could be assigned a larger influence than pre-

viously expected when choosing the considered range of values for wl. Therefore,

we set the default weights for our music rearrangement system to wl = 0.4 and

wd = 1−wl = 0.6, but a further investigation concerning larger values for wl should

be conducted, as the overall transition quality should reach a maximum and then

decline at some point when increasing wl further, as the selected jumps tend to

ignore all other musical aspects except loudness.

Instead of analysing the average ratings of the selected jumps when changing the

weights for the different matrices regarding timbre and loudness, we can also skip

the path optimisation step and directly explore the relationship between the bixel

transition costs contained in these matrices and the perceived transition quality of

the respectively produced cuts. Ideally, these costs from the cost matrices D and L

should correlate very strongly with the ratings of the participants, because the path

optimisation process relies on the accuracy of these transition costs to be able to

select the best sounding bixel transitions.

Plotting the bixel transition costs concerning timbre and loudness against the aver-

age rating regarding loudness and other musical aspects for every audio snippet in

the listening study results in figure 5.8. In particular, figure 5.8 (a) visualises the

relationship between the cost Di,j of a bixel jump and how highly it was rated in the

●

●●●●

●●●

●●

●●

●●●●

●
●●

●●●●●

●●

●●●●●

●

●●

●

●●●

●●

●

●●●

●●

●●●●

●●● ●

●●

●●

●

●●

●

●

●●●

●
●

●●

●

●

●

●

●

●●●

●

●●●

●●
●●●●

●●●

●●●●

●●●●●
● ●

●

●

●

●

●●●

●

●

●

●

1

2

3

4

5

0.0 0.2 0.4 0.6
Cost Di,j of bixel jump

A
ve

ra
ge

 "
O

th
er

"
ra

tin
g

(o
ne

 to
 fi

ve
)

(a)

●

●●●●

●●●

●●●●

●●●●

●●●

●●●●●

●●

●●●●●

●
●●

●

●●●●●

●
●●●

●●

●●●●

●●●
●
●●●●

●

●●●

●

●●●

●

●

●●

●

●

●

●
●
●●●

●

●●●●●

●●●●

●●●

●●●●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

1

2

3

4

5

0.0 0.2 0.4 0.6
Cost L i,j of bixel jump

A
ve

ra
ge

 lo
ud

ne
ss

 r
at

in
g

(o
ne

 to
 fi

ve
)

(b)

Figure 5.8.: (a) Average rating of all other musical aspects except loudness for bixel
jumps depending on their costsDi,j concerning timbre. (b) Average loudness
ratings for bixel jumps depending on their costs Li,j regarding loudness.

5.2. Listening study 123

category ”Other”on average. A perfect result would consist of points scattered across

a straight line, beginning with a high average rating for the least costly bixel jump

and ending with a low average rating for the most expensive bixel jump. Unfortu-

nately, the result has not only a very different appearance, but also does not exhibit

any significant correlation between the two variables at all. Although the matrix D

focuses on timbre and is not meant to capture other musical aspects, future work

could include integrating more music features into its computation. Alternatively,

separate matrices with their respective influences on the transition cost matrix T

could be developed, analogously to the loudness matrix L. Figure 5.8 (b) on the

other hand demonstrates the relation between the cost Li,j of a bixel jump and its

average loudness rating with a regression line. The grey area demonstrates where

the true regression line is located with a confidence of 95%, obtained by calculat-

ing the variance of its estimated slope and intersection. We compute the Spearman

rank correlation and test for its significance [51] to prove the existence of the desired

monotonic relationship between these variables. The resulting correlation coefficient

is ρ ≈ −0.35 and was found to be significant, as the true correlation coefficient is

in the range [−0.5,−0.18] with a probability of 95%. This proves the ability of our

proposed loudness matrix L to at least partially reflect the actual transition quality

regarding loudness.

No significant relationships were found between the musical education of the listener

and the ratings when using p = 0.05 as level of significance. An unexpected connec-

tion between knowing a track and the respective ratings was discovered: The result

of a paired Wilcoxon signed-rank test [41] employed to compare the overall average

ratings between the participants that did and the participants that did not know

the track showed that with a probability of 95%, knowing the track led to overall

ratings that are between 0.2 and 0.48 points higher on average.

Following the evaluation of the transition quality of the selected bixel jumps with-

out applying jump optimisation, the next section investigates whether the jump

optimisation stage improves these results even further.

5.2.2. Jump optimisation

This section specifically focuses on the evaluation of the jump optimisation in the

proposed music rearrangement system described in section 4.4.

Because the goal of the jump optimisation stage is to enhance the quality of the

signal around a cut, this part of the listening study involved participants listening

to two versions containing the same bixel jump, but only one of them was post-

124 5. Evaluation

processed with jump optimisation, and then determines if the jump optimisation

makes this version preferable. Additionally, as not every jump required such post-

processing, we compute how often the jump optimisation significantly changed the

audio signal around the cut. Similar to the previous section, possible effects of the

musical education and track knowledge of the participants on their responses will

be considered.

Data generation and selection Again, the typical test set was executed to gen-

erate the required output tracks, this time once with jump optimisation and once

without in order to analyse the differences. For every cut, an audio snippet contain-

ing six seconds of audio centered around the cut position was extracted. Afterwards,

the resulting audio snippets were grouped into pairs, where a pair of audio snippets

contained the same bixel jump, but only one of the two audio snippets was processed

by the jump optimisation procedure.

For every track in the database EVAL, two pairs of audio snippets were randomly

selected from all pairs of audio snippets belonging to the respective track, with

the following exception: Only pairs of audio snippets containing a bixel jump that

is considered to be significantly altered by the jump optimisation process were

available for the random selection. We define a bixel jump to be significantly altered

by the jump optimisation, if it exhibits an absolute loudness difference |lafter− lbefore|
of at least 5 sone and/or an absolute detected synchronisation error |rmax| of at least

0.05 seconds. The goal of this threshold was to only include pairs of audio snippets

in the surveys that were significantly changed by the jump optimisation procedure

and to exclude pairs of audio snippets with imperceptible differences. From all 556

generated pairs, 511 were significantly altered, which leads to the conclusion that the

jump optimisation procedure appears to change the signal of almost every produced

cut significantly, thus emphasising the relevance of our investigation concerning the

effects of these changes.

All in all, the random selection according to the above rules yielded 32 audio snippets

in total, distributed across eight tracks each with two pairs of audio snippets.

Study design For each selected pair of audio snippets, we asked the participants

to select the audio snippet that is perceived as more pleasing, as shown in figure 5.9.

No further information was given, meaning the participant was not able to determine

which audio snippet was additionally processed and therefore had to rely only on the

presented musical content. Either the participant was able to hear a difference and

selected one of the two audio snippets as the answer for the question, or reported not

5.2. Listening study 125

Figure 5.9.: One of the questions of the online survey designed to investigate the effects
of jump optimisation on the quality of the produced cuts. Two audio ex-
cerpts containing the same cut could be played, but only one of them was
additionally processed by jump optimisation.

being able to distinguish both audio snippets with a third option. This set-up of the

study allows us to investigate how often the additionally processed audio snippets

were preferred and how often a perceptible change was applied to the audio signal.

Discussion of results Figure 5.10 illustrates the distribution of the responses av-

eraged over all pairs of audio snippets and also distinguishes between the different

levels of musical education reported by the participants. The red segments should

ideally appear small if the jump optimisation works as intended, as they illustrate

the average percentage of cases in which the unedited audio snippet without any

jump optimisation was preferred over the additionally processed audio snippet.

Overall, the jump optimisation stage appeared to worsen the perceived quality of

the result in about 27% of all cases (”Preferred unedited”). An equally large portion,

highlighted in blue, represents how often the participants were not able to distin-

guish the two respective audio snippets on average (”No difference”). On average,

47% of all answers indicated a preference of the processed audio snippet over the

unedited one (”Preferred JO”). In summary, the audio snippets produced by the

jump optimisation procedure were rated at least as pleasing as or more pleasing

than the unedited version 73% of the time on average.

Particularly interesting is the effect of the musical education of listeners on their

average responses, as the percentage of responses indicating the preference of the

unedited audio snippet (”Preferred unedited”) tended to decrease with increasing re-

ported levels of musical education. However, this effect is not necessarily significant,

especially because only four of the 73 participants identified themselves as profes-

126 5. Evaluation

32% 41% 27%

26% 29% 45%

29% 20% 52%

16% 31% 44%

27% 27% 46%

1

2

3

4

Any

0% 25% 50% 75% 100%
Distribution of answers (%)

Le
ve

l o
f m

us
ic

al
 e

du
ca

tio
n

Response

Preferred unedited

No difference

Preferred JO

Figure 5.10.: The distribution of responses as an average over all questions each associ-
ated with a pair of audio snippets asking which snippet is preferred. In the
top row, all responses regardless of the respondents’ musical education are
considered (Musical education: ”Any”). Additional distributions, which
only take participants with a certain level of musical education ranging
from no musical education (1) to professional musicians (4) into account,
are presented below.

sional musicians (level of musical education: 4) and consequently, the corresponding

results are subject to deviations caused by outliers due to the low sample size.

Considering the possible explanations for the cuts which actually worsened in quality

after applying the jump optimisation procedure, either the loudness equalisation

method from section 4.4.2 or the synchronisation algorithm from section 4.4.1 must

have caused the issue. In an attempt to identify this cause, we analyse the extent

to which both of these algorithms alter the signal and how it relates to the output

quality as measured by the participant’s responses.

Considering the loudness equalisation method, which was fully activated with lfactor =

1 when generating the output for this part of the study, the extent to which the signal

is changed should depend on the absolute detected loudness difference |lafter− lbefore|
measured in sone. When assigning the preference of the snippet with jump opti-

misation a value of 1, a preference of the unedited snippet a value of 0, and the

statement of not hearing any difference a ”neutral” value of 0.5, the average re-

sponse score is obtained by taking the mean of the responses for a pair of audio

snippets. This numerical representation of the distribution of responses allows us

to investigate the issue further: In figure 5.11 (a), the average response score is

shown along with the absolute detected loudness difference for every bixel jump and

5.2. Listening study 127

demonstrates that a larger alteration of the signal’s loudness tended to improve the

resulting audio around the cut. The correlation with a coefficient of approximately

0.66 was significant: With a 95% probability, the true correlation coefficient was in

the interval [0.3, 1] and confirms the tendency of the loudness equalisation method

to improve the signal quality, assuming it changes the signal at all. It could however

still miss actually existing loudness differences and mistakenly not correct them,

which is not accounted for in this observation. When only taking responses made

with knowledge of the track into account, this relationship exhibits an even higher

correlation, illustrated in figure 5.11 (c), with a correlation coefficient of 0.87 and a

95% probability for the true correlation coefficient to be in the range [0.66, 1].

For all presented pairs of audio snippets, figure 5.11 (b) visualises the relationship

between the absolute delay |rmax| in seconds that was detected and subsequently cor-

rected by the synchronisation method and the average response score. Although we

●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
|lafter − lbefore| (sone)

A
ve

ra
ge

 r
es

po
ns

e
sc

or
e

(a)

●

●

●

●

●

●

●

●
●

●●

●
●

●●

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10
Absolute delay |rmax| (s)

A
ve

ra
ge

 r
es

po
ns

e
sc

or
e

(b)

●

●

●

●

●

●

●
●

●
●

● ●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
|lafter − lbefore| (sone)

A
ve

ra
ge

 r
es

po
ns

e
sc

or
e

(c)

●

●

●

●

●

●

●
●

●
●

●●

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10
Absolute delay |rmax| (s)

A
ve

ra
ge

 r
es

po
ns

e
sc

or
e

(d)

Figure 5.11.: The average response scores for every pair of audio snippets depending on
the detected loudness difference |lafter − lbefore| in sone ((a) and (c)) and
on the absolute delay |rmax| ((b) and (d)). Figures (a) and (b) consider all
responses, while figures (c) and (d) only take responses from participants
that knew the respective track into account.

128 5. Evaluation

did not find a significant correlation, this changed when only considering responses

made with knowledge of the respective track: For this subset of responses, we found

a significant negative correlation visible in figure 5.11 (d) with a coefficient of −0.6,

and a 95% probability of the true correlation being between −1 and −0.15. This

demonstrates that the synchronisation method tended to at least slightly decrease

the output quality when rated by listeners who were familiar with the original track.

In conclusion, the decreased quality of some audio snippets after processing by the

jump optimisation stage is probably caused by the synchronisation algorithm, not

the loudness equalisation method. This problem could occur due to changing the

jump times incorrectly, that is, determining a delay rmax that does not correspond

to the synchronisation error present at the beat position. As a result, the audio

around the cut contains an irritating rhythmic inconsistency, caused by the unusual

amount of time between the beat directly before the cut and the beat directly after

the cut that deviates from the normally present inter-beat interval.

We found no significant differences in the average response score when only consid-

ering the responses made with knowledge of the respective track used to generate

the audio snippets.

This concludes the evaluation of the music rearrangement system. In the last sec-

tion, we will summarise our work, the achieved advancements in the field of music

rearrangement and possible areas of improvement.

6. Conclusions

The goal of this thesis was to propose a system capable of solving the music re-

arrangement problem presented in section 3.1: Given an already existing piece of

music and a set of user constraints, a new music piece has to be produced that

fulfils these constraints by concatenating different sections of the original and op-

tionally applying postprocessing techniques in the vicinity of the resulting cuts. In

other words, the new music piece is generated by playing back the original piece and

jumping from one position in the original to another at specific times.

We decided to base our approach on the previous work from Wenner [48] and in-

tensively evaluated it with a self-built database containing a wide variety of music

pieces in section 2.3. The results in section 2.4 revealed a range of different problems

occurring at the cut positions in the produced pieces and represent a detailed report

on the state of the art in the field of music rearrangement. In particular, we focused

on avoiding and correcting sudden changes in loudness at the cuts at different stages

of the system.

Our music rearrangement system begins by identifying the locations of the beats in

the original music piece and uses them to subdivide the piece into a series of bixels,

where each bixel contains the musical content between two consecutive beats. In

section 4.1, we presented suitable metrics for selecting a beat tracker in the context of

a music rearrangement system and chose a beat tracker on this basis. As improving

or developing a beat tracker was out of the scope of this thesis, future work could

include conducting further research in the field of beat tracking to indirectly improve

the performance of bixel-based music rearrangement systems.

In section 4.2.2, we proposed a model describing how jarring a transition between

any two bixels of the input track would be perceived regarding loudness in order

to avoid such problematic transitions from being included in the output track. The

transition qualities predicted by this model were found to significantly correlate with

the perceived transition quality regarding loudness reported by a human listener, as

the evaluation of the listening study in section 5.2.1 showed, indicating that the

model successfully captures the hearing impressions of the listeners. As a result,

130 6. Conclusions

increasing the influence of this model on the selection of the optimal transitions to

be included in the output track leads to cuts with a demonstrably higher average

rating regarding loudness. In addition to this loudness model, we adapted the model

concerning timbre from Wenner [48] and combined both models. Generalising the

idea of the loudness model, it could be viable to design models for every relevant

musical aspect that influences the transition quality and to subsequently combine

them using weights optimised with the help of listening studies. This could poten-

tially lead to less perceptible cuts, because the selection of the optimal transitions

would then take all musically relevant aspects into account.

The automatic segmentation method in section 4.2.3 was adopted from Wenner [48]

to help the user in defining a description of the musical structure of the input

track, which is later used to enforce a specific structure of the output track. It

divides the piece into different segments and also clusters them according to their

similarity. In addition, the intuitive user interface allows for an efficient editing of

the automatically generated segments to achieve the desired structure. We extended

this automatic segmentation method to automatically find the optimal number of

clusters within a given range of possible numbers, which makes it easier for the user

to obtain a suitable segmentation of the input track. However, its robustness could

be improved by incorporating more musical features (like a feature describing the

melody) into the feature vector used for the clustering algorithm.

The path optimisation in section 4.3 calculates the optimal order of bixels to use

for the production of the output track and received particular attentation in this

thesis. At first, the number of bixels required to produce a music piece with a desired

length is estimated in section 4.3.2. The estimation succeeds in covering the optimal

solution with a high probability that is always greater than the probability given by

an additional parameter pmin, as shown in section 5.1.1. Future work could include

improving the underlying statistical model of the length of a bixel so the probability

of covering the optimal solution is very close to the additional parameter pmin to

make it more intuitive to use.

Because the path optimisation process accounts for the vast majority of the overall

runtime when generating a new music piece according to the given user constraints,

we focused in particular on accelerating this process. The graph-based perspective

on the problem of finding the optimal arrangement of bixels provided the basis for

proposing a multiple goal A* algorithm and the associated heuristics in section 4.3.5.

This algorithm required significantly less time to generate a new solution compared

to the dynamic programming approach by Wenner [48] and enabling the proposed

131

heuristics slightly decreased the required time even further, as shown in section 5.1.2.

Especially for long input or output tracks, our music rearrangement system achieves

a greatly reduced runtime in comparison to Wenner’s algorithm.

When extending a music piece, sometimes a short section of the original music piece

is repeated a large number of times in a row, as the evaluation of Wenner’s method

revealed in section 2.4. The ability to avoid these repetitions was integrated into the

system in section 4.3.4 and successfully reduced the estimated level of annoyance a

listener would report when hearing the output track, as section 5.1.3 demonstrated.

Future work could pertain to investigating whether the employed metric accurately

represents the perceived level of annoyance by conducting the appropriate listening

tests, which were excluded in this thesis due to time constraints.

From the path optimisation stage, an optimal set of jumps is obtained, indicating

when and how to change the playback position in the original piece. In order to

make the cuts produced from these jumps less perceptible for the listener, two main

methods were devised in section 4.4 to optimise this set of jumps and the resulting

cuts. In the jump synchronisation stage as the first main part of jump optimisation,

the provided jump times based on the detected beat positions are corrected in case

the beat tracker did not accurately locate the actual beat position, which sometimes

leads to sound artefacts at the resulting cuts. The evaluation of this jump synchro-

nisation method in section 5.2.2 led to the conclusion that it failed to increase the

quality of the cuts in the average case. Cross-correlation as employed by the jump

synchronisation method appears to be an inadequate approach for correcting the

jump times, as it sometimes worsens particularly the rhythmical quality of the pro-

duced cut. Further work could include exploring a more suitable method to robustly

synchronise the jump times and account for inaccurate beat positions. A method

to smooth jarring loudness changes at the cuts presented in section 4.4 constitutes

the second part of the jump optimisation. This loudness equalisation method signif-

icantly improved the quality of the produced cuts regarding loudness by altering the

loudness of the signal parts before and after every problematic cut according to the

evaluation in section 5.2.2. When employing both the jump synchronisation and the

loudness equalisation, the evaluation in section 5.2.2 also demonstrates the success

of our proposed jump optimisation procedure as a whole – as an average over all

participants and presented cuts, it provided a better or equally good sound quality

73% of the time in comparison to the unaltered version of the cut.

Overall, the music rearrangement succeeds in creating new music of decent quality

in most cases for a large number of genres. It also improves on the selected approach

132 6. Conclusions

from Wenner [48] in several areas, as the extensive evaluation in section 5 showed.

However, its components often involve several parameters listed in table A.2, whose

settings could be optimised to enhance the system’s performance even further. In

addition, some of the issues mentioned in section 2.4 could not be implemented due

to time constraints and thus also constitute a part of possible future work. Among

these problems, cutting off vocals is especially important as it occurred frequently

for tracks with vocals. Possible research could be concerned with finding the parts

of a music piece that contain vocals and prohibit jumps in these regions, or even

with synthesising new vocals around the produced cuts to make the transition less

noticeable. The change of tempo at cuts was another issue and could be resolved by

avoiding jumps from sections with a low tempo to sections with a high tempo and

vice versa. In addition, the disregard for time signatures, where measures with an

unusual number of beats were created, could be solved by detecting the time signa-

ture of the original piece and penalising such problematic jumps whose origin and

destination are not located at the same positions within their respective measures.

A. Additional information

A.1. Parameters

Table A.1.: List of user constraints

Name Default Domain Description Page

tstart 0 Time of orig. track Start position of result (s) 44

tend End of orig. track Time of orig. track End position of result (s) 44

ttarget 60 (0,∞) Target duration (s) 44

ttol 60 (0,∞) Duration tolerance (s) 44

I(i) 0 [0, 1] Importance of every bixel 50

wd 0.6 [0, 1] Weight of matrix for timbre D 51

wl 0.4 [0, 1] Weight of loudness matrix L 51

wp 0 [0, 1] Weight of loudness function I(i) 51

wr 0.5 [0,∞) Intensity of repetition avoidance 53

sground(t) t ∈ R Ground truth segmentation 40

starget(t) t ∈ R Target segmentation 71

tlow 2 [0,∞) Allowed segm. deviation (s) 71

thigh 4 [0,∞) Penalised segm. deviation (s) 71

lfactor 1 [0, 1] Intensity of loudness equalisation 87

Table A.2.: List of internal parameters

Name Value Domain Description Page

m 2 N0 Number of norm. binom. coefficients 31

tmean 0.2 (0,∞) Window size for bixel loudness averages (s) 36

M 128 N Size of checkerboard kernel 40

cpeak 0.1 [0, 1) Threshold for novelty curve maxima 40

pmin 0.6 [0, 1) Minimum success probability 46

µe 0 [0,∞) Mean beat error (s) 78

134 A. Additional information

Table A.2.: List of internal parameters (continued)

Genre Value Domain Description Page

σe 0.1 (0,∞) Std. deviation of beat error (s) 78

tsync 0.5 (0,∞) Window for cross-correlation (s) 79

tlim 3 (0,∞) Window for loudness equalisation (s) 84

tthresh 0.1 (0,∞) Min. distance to loudness intersection (s) 85

tloud 0.1 (0,∞) Window size of loudness average (s) 86

ftrans 3 (0,∞) Scale factor for loudness change (s) 88

tcross 0.04 [0,∞) Duration of crossfade (s) 94

A.2. Databases

Table A.3.: Database CC1

Genre Subgenre Artist Title

Blues Arne Bang

Huseby

Stormy Blues

Blues Julia Haltigan All I Can Think Of Is

You

Country Randy Travis

and Brandon

Amazing Grace

Electronic Ambient LASERS Amsterdam

Electronic Chip an0va The First Noel / O

Come All Ye Faithful

Electronic Dance Broke For Free Calm The Fuck Down

Electronic Downtempo Tours Enthusiast

Electronic Dubstep LittleLight Illumination

Electronic Glitch Oribque Simple

Electronic IDM Pierlo Barbarian

Electronic Techno Foniqz Spectrum (Subdiffu-

sion Mix)

Electronic Trip-Hop ghost Lullaby

Experimental Avantgarde Jared C. Balogh Equal Value (Ode To

A Squirrel)

Experimental Drone The Upsidedown E-Love

A.2. Databases 135

Table A.3.: Database CC1 (continued)

Genre Subgenre Artist Title

Experimental Electroacoustic Origamibiro Flicker

Experimental Field Recording Aaron Ximm Spring Rain

Experimental Musique Concrete Computer Truck Euritmix Sux My Dix

Folk Gaby Cardoso Mujerzuela

Folk Psych The New

Mystikal

Troubadours

Tonight: A Lonely

Century

Folk Singer-Songwriter Great Lake

Swimmers

Gonna Make It

Through This Year

Hip-Hop Blackwell I Neva

Instrumental David Lohstana Petit talible (instru-

mental version)

Instrumental The Kyoto Con-

nection

Hachiko The Faithful

Dog (short)

International Los Amparito El barzón

Jazz Kevin MacLeod AcidJazz

Classical Mozart by

Columbia State

University

Symphony No. 40 IV

Classical Beethoven Moonlight Sonata

(short)

Classical Beethoven Für Elise

Pop Fresh Body

Shop

Fireballs

Pop Lilly Wolf Jealousy

Pop On returning Paris (energy of life)

Rock Alternative Blind Violet Deep

Rock Garage Artistes

d’Origine in

Contrôlée

Reveille toi - Dewey

Rock Indie Dumbo Gets

Mad

Plumy Tale

Rock Industrial Nine Inch Nails 7 Ghosts I

Rock LoFi Tyrannic Toy Blackroad

136 A. Additional information

Table A.3.: Database CC1 (continued)

Genre Subgenre Artist Title

Rock Metal Insane Ride Wrong or Right

Rock Noise Lately Kind Of

Yeah

Where Is My Jaw?

Rock Postpunk Mules Teenage Freakout

Rock Postrock et Kopeika

Rock Progressive Convey Campaign Speech

Rock Psych Flowerheads 06

Rock Punk Angstbreaker Dead Elements

Soul/RnB Juanitos Hey

Table A.4.: Database CC2. Contains database CC1

Genre Subgenre Artist Title

Folk Labib Saleh Bey

Folk Singer-Songwriter Cian Nugent Double Horse

International Caligine Me Piánoune Zaládes

Jazz Quantum Jazz If I Can’t Dance It’s

Not My Revolution

Rock Psych Noi Everything Is Chang-

ing

Experimental Avantgarde Ellen Fullman Never Gets Out Of Me

Classical Gio Micheletti Happy Sinners

Classical Massimo Mas-

trangeli

Bagliori di tempesta

Classical Maya Filipič Anthos

Classical Rob Costlow Bliss

Electronic Techno Adrian Sanchez ADRIAN SANCHEZ

G PAL OPHRA

Electronic Techno Dj Rostej Light Rays

Electronic Techno -mystery- Decadence

Electronic Techno Saelynh Summer in Paradise

Electronic Techno Synthager The Way of Atlant

A.3. Experiment evaluations 137

Table A.5.: Database EVAL

Genre Subgenre Artist Title

Rock Beatles Hey Jude

Pop Leann Rimes How Do I Live

Rock Hard Rock Motörhead Ace Of Spades

Classical Columbia State

University Or-

chestra

Mozart’s Symphony

No. 40 IV

Hip-Hop Blackwell I Neva

International Los Amparito El barzón

Folk Singer-Songwriter Great Lake

Swimmers

Gonna Make It

Through This Year

Electronic Ambient LASERS Amsterdam

A.3. Experiment evaluations

Table A.6.: Runtimes in seconds of models in the Loudness Toolbox [18]

Zwicker [14] Zwicker [14] parallelised Moore et al [19]

45.7 11.6 3290.5

61.1 15.3 4371.4

66.7 17.5 4823.3

38.9 10.4 2747.7

79.2 21.5 5772.3

49.4 13.3 3492.3

81.5 23.3 5848

77.9 21.6 5586.8

93.4 25.6 6844.9

60.2 16.6 4253.4

Averages:

65.4 17.67 4703

Std. deviations:

17.6 5.2 1309.5

138 A. Additional information

Table A.7.: Davies beat tracker [9] evaluated on database CC1

Title CMLc CMLt AMLc AMLt Inf.

gain

Stormy Blues 0 0 0 0 2.26

All I Can Think Of Is You 97.91 97.91 97.91 97.91 2.86

Amazing Grace 99.68 99.68 99.68 99.68 3.07

Amsterdam 0 0 91.94 91.94 2.2

The First Noel / O Come All Ye

Faithful

60.54 87.57 60.54 87.57 2.15

Calm The Fuck Down 74.6 94.71 74.6 94.71 2.73

Enthusiast 51.81 93.26 51.81 93.26 3

Illumination 0 0 54.21 99.52 2.49

Simple 4.73 4.73 4.73 4.73 0.76

Barbarian 100 100 100 100 3.45

Spectrum (Subdiffusion Mix) 0 0 53.3 93.39 1.79

Lullaby 0 0 99.8 99.8 2.64

Equal Value (Ode To A Squirrel) 78.26 78.26 78.26 78.26 3.15

E-Love 77.51 86.8 77.51 86.8 2.25

Flicker 3.59 3.59 85.34 87.93 1.68

Spring Rain 55.03 87.83 55.03 87.83 1.64

Euritmix Sux My Dix 99.46 99.46 99.46 99.46 3.54

Mujerzuela 98.88 98.88 98.88 98.88 3.01

Tonight: A Lonely Century 0.85 1.13 31.6 31.6 0.64

Gonna Make It Through This

Year

100 100 100 100 3.23

I Neva 2.49 12.77 2.49 12.77 3.42

Petit talible 99.71 99.71 99.71 99.71 3.15

Hachiko The Faithful Dog (short) 0 0 15.2 73.86 1.06

El barzón 0 0 100 100 3.06

AcidJazz 100 100 100 100 2.89

Symphony No. 40 IV 50.58 87.81 50.58 87.81 1.5

Moonlight Sonata (short) 0 0 0.12 0.12 0.8

Für Elise 0.82 3.28 1.57 3.54 0.31

Fireballs 0 0 99.05 99.05 2.26

Jealousy 99.29 99.29 99.29 99.29 3.13

A.3. Experiment evaluations 139

Table A.7.: Davies beat tracker [9] evaluated on database CC1 (continued)

Title CMLc CMLt AMLc AMLt Inf.

gain

Paris (energy of life) 87.15 87.15 87.15 87.15 2.55

Deep 99.42 99.42 99.42 99.42 2.98

Reveille toi - Dewey 0 0 100 100 1.89

Plumy Tale 99.72 99.72 99.72 99.72 2.97

7 Ghosts I 98.91 98.91 98.91 98.91 3.5

Blackroad 62.58 96.13 62.58 96.13 2.72

Wrong or Right 12.03 18.9 60.69 60.69 1.46

Where Is My Jaw? 99.14 99.14 99.14 99.14 3.03

Teenage Freakout 6.32 6.32 48.88 61.43 1.36

Kopeika 80.21 95.95 80.21 95.95 2.4

Campaign Speech 23.54 32.26 23.54 32.26 0.65

06 0 0 100 100 3.06

Dead Elements 14.29 14.29 56.31 56.31 1.43

Hey 99.69 99.69 99.69 99.69 2.96

Average values: 48.61 54.19 70.43 79.46 2.34

Standard deviations: 43.93 46.12 34.12 31.96 0.89

Table A.8.: Evaluation of [48] on a subset of database CC1

Title Setting T R M C Comments

Stormy Blues 60 0 8 10 10 10 Stereo field location

changes

Stormy Blues 60 3 7 2 1 5

Stormy Blues 60 10 10 10 10 10

Stormy Blues 600 0 8 7 6 10 Double Hi-Hat sound

Stormy Blues 600 30 10 8 10 10

Stormy Blues GT 60 0 9 10 1 10

Stormy Blues GT 60 3 10 10 10 10

Stormy Blues GT 60 10 8 9 5 7

Stormy Blues GT 600 0 1 6 6 1 Jump from mid-song to

the silent beginning

Stormy Blues GT 600 30 4 7 7 4 see above

All I Can Think Of Is You 60 0 7 10 10 8 Small loudness change

All I Can Think Of Is You 60 3 6 10 10 8 see above

All I Can Think Of Is You 60 10 10 10 10 10

140 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

All I Can Think Of Is You 600 0 9 10 10 10

All I Can Think Of Is You 600 30 10 10 10 10

All I Can Think Of Is You GT 60 0 7 10 10 9 Small loudness change

All I Can Think Of Is You GT 60 3 6 10 10 10 see above

All I Can Think Of Is You GT 60 10 9 10 10 10

All I Can Think Of Is You GT 600 0 6 10 5 10 Large loudness change

All I Can Think Of Is You GT 600 30 10 10 10 10

Amazing Grace 60 0 4 10 10 5 Vocals

Amazing Grace 60 3 5 10 10 2 Vocals

Amazing Grace 60 10 9 10 10 6

Amazing Grace 600 0 2 9 9 5

Amazing Grace 600 30 5 9 9 7

Amazing Grace GT 60 0 2 10 3 3 Vocals

Amazing Grace GT 60 3 1 9 2 1 Vocals

Amazing Grace GT 60 10 9 10 10 6

Amazing Grace GT 600 0 2 9 9 5

Amazing Grace GT 600 30 5 9 9 7

Amsterdam 60 0 10 8 6 9

Amsterdam 60 3 10 8 6 9

Amsterdam 60 10 10 10 10 10

Amsterdam 600 0 10 9 8 10

Amsterdam 600 30 8 10 10 10

Amsterdam GT 60 0 8 10 8 10 Snare sound artifact

Amsterdam GT 60 3 8 10 8 10 see above

Amsterdam GT 60 10 8 10 10 10 see above

Amsterdam GT 600 0 7 10 10 10 Jump from fadeout to full

loudness

Amsterdam GT 600 30 7 10 10 10 see above

The First Noel / O Come All Ye

Faithful

60 0 7 8 6 5

see above 60 3 9 3 10 10

see above 60 10 9 3 10 10

see above 600 0 8 8 8 3 Many repetitions of the

same short segment

see above 600 30 9 10 8 4

see above GT 60 0 7 9 6 6

see above GT 60 3 10 10 10 10

see above GT 60 10 10 10 10 10

see above GT 600 0 8 10 8 5 Many repetitions of the

same short segment

see above GT 600 30 8 10 8 5 see above

A.3. Experiment evaluations 141

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Calm The Fuck Down 60 0 10 10 9 8

Calm The Fuck Down 60 3 10 10 9 10

Calm The Fuck Down 60 10 10 10 10 10

Calm The Fuck Down 600 0 7 10 6 7

Calm The Fuck Down 600 30 10 10 10 10

Calm The Fuck Down GT 60 0 10 10 10 10

Calm The Fuck Down GT 60 3 10 10 10 10

Calm The Fuck Down GT 60 10 10 10 10 10

Calm The Fuck Down GT 600 0 8 10 10 6

Calm The Fuck Down GT 600 30 9 10 10 8

Enthusiast 60 0 8 10 10 8

Enthusiast 60 3 9 10 10 9

Enthusiast 60 10 10 10 10 10

Enthusiast 600 0 9 10 10 10

Enthusiast 600 30 10 10 10 10

Enthusiast GT 60 0 8 10 10 10

Enthusiast GT 60 3 10 10 5 10

Enthusiast GT 60 10 10 10 10 10

Enthusiast GT 600 0 5 10 10 10

Enthusiast GT 600 30 10 10 10 10

Illumination 60 0 1 10 2 5

Illumination 60 3 1 10 2 5

Illumination 60 10 1 10 2 5

Illumination 600 0 9 8 8 8

Illumination 600 30 9 8 8 8

Illumination GT 60 0 10 10 8 6

Illumination GT 60 3 10 10 1 8

Illumination GT 60 10 8 10 1 5

Illumination GT 600 0 8 8 10 6

Illumination GT 600 30 10 10 10 6

Simple 60 0 7 5 2 4

Simple 60 3 7 10 10 8

Simple 60 10 8 10 10 8

Simple 600 0 6 10 10 6 Large loudness change

Simple 600 30 8 10 10 9

Simple GT 60 0 3 8 5 5

Simple GT 60 3 1 7 7 4

Simple GT 60 10 1 10 10 6 Large loudness change

Simple GT 600 0 1 10 3 4

Simple GT 600 30 2 10 4 4

Barbarian 60 0 8 10 7 3

142 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Barbarian 60 3 9 10 10 8

Barbarian 60 10 10 10 10 10

Barbarian 600 0 10 10 10 5 Many repetitions of the

same short segment

Barbarian 600 30 10 10 10 5 see above

Barbarian GT 60 0 10 10 10 8

Barbarian GT 60 3 10 10 10 7

Barbarian GT 60 10 10 10 10 10

Barbarian GT 600 0 10 10 10 5 Many repetitions of the

same short segment

Barbarian GT 600 30 10 10 10 5 see above

Spectrum (Subdiffusion Mix) 60 0 10 10 10 10

see above 60 3 10 10 10 10

see above 60 10 10 10 10 10

see above 600 0 10 10 10 10

see above 600 30 10 10 10 10

see above GT 60 0 10 10 3 8

see above GT 60 3 10 10 10 10

see above GT 60 10 10 10 10 10

see above GT 600 0 10 10 5 10

see above GT 600 30 10 9 10 10

Lullaby 60 0 10 10 10 10

Lullaby 60 3 10 10 10 10

Lullaby 60 10 10 10 10 10

Lullaby 600 0 8 9 10 10

Lullaby 600 30 9 9 10 10

Lullaby GT 60 0 8 10 7 10

Lullaby GT 60 3 10 10 10 10

Lullaby GT 60 10 10 10 10 10

Lullaby GT 600 0 7 9 8 10 Inaccurate beats produce

sound artifacts

Lullaby GT 600 30 8 9 10 10 see above

Equal Value (Ode To A Squirrel) 60 0 10 10 8 7

see above 60 3 10 10 10 8

see above 60 10 9 10 10 7

see above 600 0 10 10 10 4 Many repetitions of the

same short segment

see above 600 30 10 10 10 4 see above

see above GT 60 0 7 10 10 10

see above GT 60 3 10 10 10 10

see above GT 60 10 10 10 10 10

A.3. Experiment evaluations 143

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

see above GT 600 0 8 10 6 4 Many repetitions of the

same short segment

see above GT 600 30 10 10 10 4 see above

E-Love 60 0 4 10 10 8 Large loudness change

E-Love 60 3 4 10 10 8 see above

E-Love 60 10 5 10 10 8 see above

E-Love 600 0 8 10 10 3 Vocals

E-Love 600 30 9 10 10 8

E-Love GT 60 0 8 7 10 8

E-Love GT 60 3 10 10 10 8

E-Love GT 60 10 10 10 10 8

E-Love GT 600 0 8 10 10 3 Vocals

E-Love GT 600 30 9 10 10 9

Flicker 60 0 5 10 10 7

Flicker 60 3 6 10 10 7

Flicker 60 10 7 9 10 8

Flicker 600 0 2 8 10 8

Flicker 600 30 2 8 10 8

Flicker GT 60 0 2 10 10 5

Flicker GT 60 3 2 10 10 5

Flicker GT 60 10 2 10 10 5

Flicker GT 600 0 1 4 3 3 Many repetitions of the

same short segment

Flicker GT 600 30 2 4 3 3 see above

Spring Rain 60 0 1 4 1 6

Spring Rain 60 3 10 10 10 10

Spring Rain 60 10 8 10 10 10

Spring Rain 600 0 8 10 8 10

Spring Rain 600 30 10 10 10 10

Spring Rain GT 60 0 10 10 5 8

Spring Rain GT 60 3 10 10 5 8

Spring Rain GT 60 10 10 10 10 10

Spring Rain GT 600 0 9 10 10 10

Spring Rain GT 600 30 8 8 10 10 Inaccurate beats produce

sound artifacts

Euritmix Sux My Dix 60 0 9 10 10 8

Euritmix Sux My Dix 60 3 9 10 3 7

Euritmix Sux My Dix 60 10 9 10 10 9

Euritmix Sux My Dix 600 0 7 10 1 5

Euritmix Sux My Dix 600 30 8 10 1 6

Euritmix Sux My Dix GT 60 0 8 9 10 8

144 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Euritmix Sux My Dix GT 60 3 9 9 10 8

Euritmix Sux My Dix GT 60 10 10 10 10 9

Euritmix Sux My Dix GT 600 0 6 10 4 5

Euritmix Sux My Dix GT 600 30 7 10 4 7

Mujerzuela 60 0 9 10 8 10

Mujerzuela 60 3 10 10 8 10

Mujerzuela 60 10 10 10 8 10

Mujerzuela 600 0 10 10 10 10

Mujerzuela 600 30 8 10 10 10

Mujerzuela GT 60 0 9 10 8 10

Mujerzuela GT 60 3 10 10 8 10

Mujerzuela GT 60 10 10 10 10 10

Mujerzuela GT 600 0 8 10 8 10

Mujerzuela GT 600 30 9 10 10 10

Tonight: A Lonely Century 60 0 3 2 1 7 Tempo changes

Tonight: A Lonely Century 60 3 3 2 1 7

Tonight: A Lonely Century 60 10 3 2 1 7

Tonight: A Lonely Century 600 0 4 6 8 8

Tonight: A Lonely Century 600 30 5 8 8 8

Tonight: A Lonely Century GT 60 0 3 8 2 1

Tonight: A Lonely Century GT 60 3 3 8 2 1

Tonight: A Lonely Century GT 60 10 3 8 2 1

Tonight: A Lonely Century GT 600 0 3 8 5 4

Tonight: A Lonely Century GT 600 30 5 8 5 4

Gonna Make It Through This

Year

60 0 4 9 3 8

see above 60 3 4 9 5 8

see above 60 10 4 9 5 8

see above 600 0 8 10 10 10

see above 600 30 10 10 10 10

see above GT 60 0 4 9 3 8

see above GT 60 3 4 9 5 8

see above GT 60 10 8 10 7 4

see above GT 600 0 10 10 10 10

see above GT 600 30 10 10 10 10

I Neva 60 0 6 10 7 8

I Neva 60 3 3 10 8 6 Large loudness change

I Neva 60 10 7 10 10 9

I Neva 600 0 8 10 10 10 Jump from fadeout to full

loudness

I Neva 600 30 9 10 10 10 see above

A.3. Experiment evaluations 145

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

I Neva GT 60 0 4 10 8 6 Large loudness change

I Neva GT 60 3 6 10 8 6

I Neva GT 60 10 6 10 8 6

I Neva GT 600 0 6 10 8 6 Vocals

I Neva GT 600 30 8 10 10 9 Jump from fadeout to full

loudness

Petit talible (instrumental ver-

sion)

60 0 8 10 10 10

see above 60 3 10 10 10 10

see above 60 10 10 10 10 10

see above 600 0 9 10 10 10

see above 600 30 10 10 10 10

see above GT 60 0 10 10 10 10

see above GT 60 3 10 10 10 10

see above GT 60 10 10 10 10 10

see above GT 600 0 10 10 6 10

see above GT 600 30 10 10 10 10

Hachiko The Faithful Dog

(short)

60 0 7 10 8 10

see above 60 3 8 10 8 10

see above 60 10 9 10 9 8

see above 600 0 7 10 10 10 Loudness change

see above 600 30 8 10 10 10 see above

see above GT 60 0 9 10 10 9

see above GT 60 3 9 10 10 9

see above GT 60 10 7 10 10 8 Loudness change

see above GT 600 0 4 10 8 6 see above

see above GT 600 30 7 10 10 8 see above

El barzón 60 0 10 10 10 10

El barzón 60 3 10 10 10 10

El barzón 60 10 10 10 10 10

El barzón 600 0 10 10 10 6 Many repetitions of the

same short segment

El barzón 600 30 10 10 10 6 Many repetitions of the

same short segment

El barzón GT 60 0 10 10 10 10

El barzón GT 60 3 10 10 10 10

El barzón GT 60 10 10 10 10 10

El barzón GT 600 0 7 10 8 6 Many repetitions of the

same short segment

146 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

El barzón GT 600 30 10 10 10 6 Many repetitions of the

same short segment

AcidJazz 60 0 10 10 5 8

AcidJazz 60 3 10 10 10 9

AcidJazz 60 10 10 10 10 10

AcidJazz 600 0 6 9 5 8

AcidJazz 600 30 8 10 10 9

AcidJazz GT 60 0 10 10 5 8

AcidJazz GT 60 3 10 10 10 9

AcidJazz GT 60 10 10 10 10 10

AcidJazz GT 600 0 6 9 5 8

AcidJazz GT 600 30 8 10 10 9

Symphony No. 40 IV 60 0 9 10 9 9

Symphony No. 40 IV 60 3 10 10 10 10

Symphony No. 40 IV 60 10 10 10 10 10

Symphony No. 40 IV 600 0 4 8 6 7

Symphony No. 40 IV 600 30 10 10 10 8

Symphony No. 40 IV GT 60 0 10 10 10 9

Symphony No. 40 IV GT 60 3 10 10 10 10

Symphony No. 40 IV GT 60 10 10 10 10 10

Symphony No. 40 IV GT 600 0 3 10 3 9

Symphony No. 40 IV GT 600 30 9 10 10 9

Fireballs 60 0 8 10 10 6

Fireballs 60 3 9 10 10 10

Fireballs 60 10 10 10 10 10

Fireballs 600 0 6 10 7 9

Fireballs 600 30 10 10 10 10

Fireballs GT 60 0 6 10 6 9

Fireballs GT 60 3 10 10 10 9

Fireballs GT 60 10 10 10 10 10

Fireballs GT 600 0 9 10 8 9

Fireballs GT 600 30 10 10 10 10

Deep 60 0 9 10 10 10

Deep 60 3 10 10 10 10

Deep 60 10 10 10 10 10

Deep 600 0 9 10 10 8

Deep 600 30 10 10 10 8

Deep GT 60 0 10 10 3 8

Deep GT 60 3 10 10 10 10

Deep GT 60 10 10 10 10 10

Deep GT 600 0 10 10 5 7

A.3. Experiment evaluations 147

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Deep GT 600 30 10 10 10 10

Reveille toi - Dewey 60 0 8 10 7 6

Reveille toi - Dewey 60 3 6 10 8 9

Reveille toi - Dewey 60 10 6 10 8 10

Reveille toi - Dewey 600 0 9 10 10 10

Reveille toi - Dewey 600 30 10 10 10 10

Reveille toi - Dewey GT 60 0 6 10 6 9

Reveille toi - Dewey GT 60 3 8 10 6 7

Reveille toi - Dewey GT 60 10 9 10 6 6

Reveille toi - Dewey GT 600 0 7 10 10 9

Reveille toi - Dewey GT 600 30 8 10 10 10

Plumy Tale 60 0 6 10 8 6

Plumy Tale 60 3 4 10 10 5

Plumy Tale 60 10 10 10 10 10

Plumy Tale 600 0 9 10 10 10

Plumy Tale 600 30 10 10 10 10

Plumy Tale GT 60 0 5 10 10 5

Plumy Tale GT 60 3 6 10 10 6

Plumy Tale GT 60 10 10 10 10 10

Plumy Tale GT 600 0 7 10 8 10

Plumy Tale GT 600 30 10 10 10 10

7 Ghosts I 60 0 10 10 7 10

7 Ghosts I 60 3 10 10 10 10

7 Ghosts I 60 10 10 10 10 10

7 Ghosts I 600 0 9 10 9 5 Many repetitions of the

same short segment

7 Ghosts I 600 30 10 10 10 5 see above

7 Ghosts I GT 60 0 8 10 3 10

7 Ghosts I GT 60 3 9 9 10 10

7 Ghosts I GT 60 10 9 9 10 10

7 Ghosts I GT 600 0 9 10 9 5 Many repetitions of the

same short segment

7 Ghosts I GT 600 30 10 10 10 5 see above

Blackroad 60 0 9 10 7 10 Loudness change

Blackroad 60 3 9 10 10 10 see above

Blackroad 60 10 10 10 10 10 see above

Blackroad 600 0 7 10 7 8 Stereo field location

changes

Blackroad 600 30 8 10 10 9 see above

Blackroad GT 60 0 7 10 3 10 Loudness change

Blackroad GT 60 3 6 10 10 10 see above

148 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Blackroad GT 60 10 7 10 10 10 see above

Blackroad GT 600 0 7 10 8 10 Stereo field location

changes

Blackroad GT 600 30 8 10 10 10 see above

Wrong or Right 60 0 7 10 4 3

Wrong or Right 60 3 8 4 8 9

Wrong or Right 60 10 7 4 5 3 Very inaccurate beat posi-

tions

Wrong or Right 600 0 8 6 8 8

Wrong or Right 600 30 8 6 10 9

Wrong or Right GT 60 0 10 10 8 6

Wrong or Right GT 60 3 10 10 8 6

Wrong or Right GT 60 10 10 10 10 10

Wrong or Right GT 600 0 10 10 10 10

Wrong or Right GT 600 30 10 10 10 10

Where Is My Jaw? 60 0 4 10 8 6 Jumps only at the end

Where Is My Jaw? 60 3 6 10 10 7 see above

Where Is My Jaw? 60 10 6 10 10 7 see above

Where Is My Jaw? 600 0 9 10 8 4 Many repetitions of the

same short segment

Where Is My Jaw? 600 30 10 10 10 4 see above

Where Is My Jaw? GT 60 0 4 10 8 6 Jumps only at the end

Where Is My Jaw? GT 60 3 6 10 10 7 see above

Where Is My Jaw? GT 60 10 6 10 10 7 see above

Where Is My Jaw? GT 600 0 8 10 8 4 Many repetitions of the

same short segment

Where Is My Jaw? GT 600 30 10 10 10 4 see above

Teenage Freakout 60 0 8 4 6 6 Tempo changes

Teenage Freakout 60 3 8 4 6 7 see above

Teenage Freakout 60 10 8 4 6 7 see above

Teenage Freakout 600 0 6 1 1 4 see above

Teenage Freakout 600 30 3 1 1 4 see above

Teenage Freakout GT 60 0 8 4 6 6 see above

Teenage Freakout GT 60 3 8 5 6 7 see above

Teenage Freakout GT 60 10 10 7 10 10 Tempo slightly changes

Teenage Freakout GT 600 0 7 9 6 5

Teenage Freakout GT 600 30 10 10 10 4 Many repetitions of the

same short segment

Kopeika 60 0 1 6 1 5

Kopeika 60 3 2 6 1 5

Kopeika 60 10 4 6 1 7

A.3. Experiment evaluations 149

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Kopeika 600 0 9 10 8 8

Kopeika 600 30 9 10 10 8

Kopeika GT 60 0 7 10 5 8

Kopeika GT 60 3 5 10 4 7

Kopeika GT 60 10 5 10 10 7

Kopeika GT 600 0 10 10 7 10

Kopeika GT 600 30 8 10 10 10 Loudness change

Campaign Speech 60 0 7 1 1 7

Campaign Speech 60 3 8 1 1 7

Campaign Speech 60 10 9 1 1 8 Tempo changes

Campaign Speech 600 0 5 1 1 9

Campaign Speech 600 30 10 10 10 10

Campaign Speech GT 60 0 2 9 3 8 Tempo changes

Campaign Speech GT 60 3 1 9 3 9 see above

Campaign Speech GT 60 10 1 9 3 9 see above

Campaign Speech GT 600 0 9 10 10 8 Snare sound artifact

Campaign Speech GT 600 30 9 10 10 9

06 60 0 9 10 10 10

06 60 3 10 10 10 10

06 60 10 10 10 10 10

06 600 0 10 10 10 8

06 600 30 10 10 10 8

06 GT 60 0 10 10 10 6 Repetitions of the same

short segment

06 GT 60 3 10 10 10 10

06 GT 60 10 10 10 10 10

06 GT 600 0 10 10 8 9

06 GT 600 30 10 10 10 9

Dead Elements 60 0 2 1 1 6

Dead Elements 60 3 1 1 1 6

Dead Elements 60 10 1 1 1 6

Dead Elements 600 0 1 1 1 3

Dead Elements 600 30 1 1 1 3

Dead Elements GT 60 0 4 8 1 5 Tempo changes

Dead Elements GT 60 3 6 10 4 4

Dead Elements GT 60 10 6 9 4 4

Dead Elements GT 600 0 2 10 2 6

Dead Elements GT 600 30 6 10 4 6

Hey 60 0 10 10 10 10

Hey 60 3 10 10 10 10

Hey 60 10 10 10 10 10

150 A. Additional information

Table A.8.: Evaluation of [48] on a subset of database CC1 (continued)

Title Setting T R M C Comments

Hey 600 0 10 10 8 10

Hey 600 30 10 10 10 10

Hey GT 60 0 10 10 10 10

Hey GT 60 3 10 10 10 10

Hey GT 60 10 10 10 10 10

Hey GT 600 0 10 10 8 10

Hey GT 600 30 10 10 10 10

Average values: 7.8 9.2 8 8

Standard deviation: 2.7 2 2.9 2.3

List of Figures

2.1. Audio example of a heavily repeated section 15

2.2. Audio example with an unexpected change in measure 16

2.3. Audio example with an unexpected change in vocals 16

2.4. Audio example containing tempo changes 17

2.5. Audio example with an unexpected change in loudness 18

2.6. Audio example for beat synchronisation problems 18

2.7. Audio example for changes in stereo field location 19

3.1. Overview of the proposed music restructuring system 25

4.1. Music excerpt with beeps at the detected beat positions 28

4.2. Self-similarity matrices S, S′ and S′′ 33

4.3. Transition cost matrix D′ . 34

4.4. Instantaneous loudness function . 36

4.5. Part of the loudness function for an example bixel 37

4.6. Loudness matrix L . 39

4.7. Novelty curve plot . 40

4.8. Silhouette plot for a spectral clustering example 42

4.9. Ground truth segmentation result for an example song 42

4.10. Probability distributions of the random variables Bn and Lk′ 47

4.11. Probability distribution of Plen(k) . 48

4.12. Importance function . 51

4.13. Unified cost matrix T . 54

4.14. Graph G used for path optimisation 56

4.15. Travel distance heuristic preprocessing plots 62

4.16. Travel distance heuristic ĥ1 for a single goal 64

4.17. Travel distance heuristic h1 for multiple goals 65

4.18. Jump necessity heuristic: corig and cinter 67

4.19. Fade function ffade(t) . 72

4.20. Segmentation enforcement results . 75

152 List of Figures

4.21. Original audio as a reference for sound artefacts 77

4.22. Audio example for sound artefacts caused by inaccurate beat positions 77

4.23. Waveforms of audio signals at inaccurate jump positions 78

4.24. (Weighted) unbiased cross-correlation function 80

4.25. Waveforms of audio signals at optimised jump positions 81

4.26. Audio produced with synchronised jump positions 82

4.27. Audio produced by a jump introducing loudness differences 84

4.28. Loudness function around jump positions 85

4.29. Loudness function with restricted domain 86

4.30. Interpolation functions controlling the loudness equalisation 91

4.31. Loudness change functions used for loudness equalisation 92

4.32. Audio containing a jump processed with loudness equalisation 93

4.33. Audio containing a cut with clicking noise 94

4.34. Crossfading of a cut to remove a clicking noise 95

4.35. Audio processed by crossfading to remove clicking noise 96

4.36. User interface during the segmentation stage 98

4.37. User interface during the rearrangement stage 100

5.1. Evaluation of path length estimation 106

5.2. Runtimes of path optimisation algorithms for different pmin 108

5.3. Runtimes of path optimisation algorithm with different input and

constraints . 110

5.4. Average rpath of output tracks generated with different wr 113

5.5. Effects of the segmentation tolerance parameters tlow and thigh 115

5.6. Survey question to investigate the transition quality regarding loud-

ness and other aspects . 120

5.7. Average ratings of transition quality for different wl 121

5.8. Relationship between the bixel transition costs in D and L and the

respective average ratings . 122

5.9. Survey question to investigate the effects of jump optimisation 125

5.10. Average responses to the questions concerning jump optimisation sep-

arated by musical education . 126

5.11. Average response score depending on the detected loudness difference

and the corrected delay with and without being familiar to the track 127

List of Algorithms

4.1. Selection of the optimal krange . 49

4.2. A* algorithm with a monotonic heuristics 58

4.3. Termination condition for A* algorithm with a single goal 59

4.4. Termination condition for the multiple goal A* algorithm 60

4.5. Travel distance heuristic for a single goal 63

4.6. Travel distance heuristic for multiple goals 66

4.7. Jump necessity heuristic for multiple goals 68

4.8. Segmentation enforcement by manipulating transition costs 74

Bibliography

[1] Audacity team: Crossfade types. http://manual.audacityteam.org/o/

man/crossfade_tracks.html. – Accessed: 2015-08-31

[2] Avidan, S.; Shamir, A.: Seam carving for content-aware image resizing. In:

ACM Transactions on graphics (TOG) Vol. 26, 2007, p. 10

[3] Boris, S.: The Boost C++ Libraries. XML Press, 2011

[4] Caplin, W. E.: Classical form: A theory of formal functions for the instru-

mental music of Haydn, Mozart, and Beethoven. Oxford University Press, 1998

[5] Christensen, T.: The Cambridge history of Western music theory. Cam-

bridge University Press, 2002

[6] Davies, M. E. P.: Beat Tracker Implementation in MATLAB. https://code.

soundsoftware.ac.uk/projects/davies-beat-tracker. – Accessed: 2015-

08-31

[7] Davies, M. E. P.: Beat Tracking Evaluation Toolbox in MATLAB. https://

code.soundsoftware.ac.uk/projects/beat-evaluation. – Accessed: 2015-

08-31

[8] Davies, M. E. P.; Degara, N.; Plumbley, M. D.: Evaluation methods for

musical audio beat tracking algorithms. In: Queen Mary University of London,

Centre for Digital Music, Tech. Rep. C4DM-TR-09-06 (2009)

[9] Davies, M. E. P.; Plumbley, M. D.: Context-Dependent Beat Tracking of

Musical Audio. In: IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP) 15 (2007), No. 3, p. 1009–1020

[10] Davis, G.; Davis, G. D.: The sound reinforcement handbook. Ch. 12, p. 201–

203, Hal Leonard Corporation, 1989

http://manual.audacityteam.org/o/man/crossfade_tracks.html
http://manual.audacityteam.org/o/man/crossfade_tracks.html
https://code.soundsoftware.ac.uk/projects/davies-beat-tracker
https://code.soundsoftware.ac.uk/projects/davies-beat-tracker
https://code.soundsoftware.ac.uk/projects/beat-evaluation
https://code.soundsoftware.ac.uk/projects/beat-evaluation

156 Bibliography

[11] Dijkstra, E. W.: A note on two problems in connexion with graphs. In:

Numerische Mathematik 1 (1959), p. 269–271

[12] Driedger, J.; Müller, M.: TSM Toolbox: MATLAB Implementations of

Time-Scale Modification Algorithms. In: Proceedings of the International Con-

ference on Digital Audio Effects (DAFx). Erlangen, Germany, 2014, p. 249–256

[13] Everest, F. A.; Pohlmann, K.: Master Handbook of Acoustics. McGraw-Hill

Education, 2009

[14] Fastl, H.; Zwicker, E.: Psychoacoustics: Facts and models. Vol. 22. Springer

Science & Business Media, 2007

[15] Fletcher, H.; Munson, W. A.: Relation between loudness and masking. In:

The Journal of the Acoustical Society of America 9 (1937), No. 1, p. 78

[16] Foote, J. T.; Cooper, M. L.: Media segmentation using self-similarity de-

composition. In: Electronic Imaging 2003, International Society for Optics and

Photonics, 2003, p. 167–175

[17] Fredman, M. L.; Tarjan, R. E.: Fibonacci heaps and their uses in improved

network optimization algorithms. In: Journal of the ACM (JACM) 34 (1987),

No. 3, p. 596–615

[18] GENESIS: MATLAB Loudness Toolbox. http://genesis-acoustics.com/

en/loudness_online-32.html. – Accessed: 2015-08-31

[19] Glasberg, B. R.; Moore, B. C. J.: A model of loudness applicable to time-

varying sounds. In: Journal of the Audio Engineering Society 50 (2002), No. 5,

p. 331–342

[20] Hart, P. E.; Nilsson, N. J.; Raphael, B.: A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. In: IEEE Transactions on Systems

Science and Cybernetics 4 (1968), No. 2, p. 100–107

[21] ISO: Acoustics - Normal equal-loudness-level contours / International Organi-

zation for Standardization. Geneva, Switzerland, 2003 (226:2003). – Research

paper

[22] Lartillot, O.; Toiviainen, P.; Eerola, T.: A Matlab Toolbox for Mu-

sic Information Retrieval. In: Preisach, C. (Ed.); Burkhardt, H. (Ed.);

http://genesis-acoustics.com/en/loudness_online-32.html
http://genesis-acoustics.com/en/loudness_online-32.html

Bibliography 157

Schmidt-Thieme, L. (Ed.); Decker, Reinhold (Ed.): Data Analysis, Ma-

chine Learning and Applications. Springer Berlin Heidelberg, 2008 (Studies in

Classification, Data Analysis, and Knowledge Organization), p. 261–268

[23] Mathworks: Cross-Correlation function ”xcorr” in MATLAB. http://de.

mathworks.com/help/signal/ref/xcorr.html#inputarg_scaleopt. – Ac-

cessed: 2015-08-31

[24] Mathworks: MATLAB Parallel Computing Toolbox. http://mathworks.

com/products/parallel-computing/. – Accessed: 2015-08-31

[25] Mathworks: MATLAB programming language. http://www.mathworks.

com/products/matlab/. – Accessed: 2015-08-31

[26] Mathworks: MATLAB Signal Processing Toolbox. http://mathworks.com/

products/signal/. – Accessed: 2015-08-31

[27] Matthias H., U.: Graph Demo - a Matlab GUI to explore similarity graphs

and their use in machine learning. http://www.ml.uni-saarland.de/code/

GraphDemo/GraphDemo.htm. – Accessed: 2015-08-31

[28] McKinney, M. F.; Moelants, D.; Davies, M. E. P.; Klapuri, A.: Evalua-

tion of audio beat tracking and music tempo extraction algorithms. In: Journal

of New Music Research 36 (2007), No. 1, p. 1–16

[29] Moore, B. C. J.; Glasberg, B. R.; Baer, T.: A model for the prediction of

thresholds, loudness, and partial loudness. In: Journal of the Audio Engineering

Society 45 (1997), No. 4, p. 224–240

[30] Olson, H. F.: The measurement of loudness. In: Audio Magazine (1972),

February, p. 18–22

[31] Open Music Theory Textbook: Form in pop/rock music. http://

openmusictheory.com/popRockForm.html. – Accessed: 2015-08-31

[32] Papadimitriou, C. H.; Steiglitz, K.: Combinatorial optimization: algo-

rithms and complexity. Courier Corporation, 1998

[33] Parker, J.R.; Behm, B.: Creating audio textures by example: tiling and

stitching. In: Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP) Vol. 4, 2004, p. 317–320

http://de.mathworks.com/help/signal/ref/xcorr.html#inputarg_scaleopt
http://de.mathworks.com/help/signal/ref/xcorr.html#inputarg_scaleopt
http://mathworks.com/products/parallel-computing/
http://mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://mathworks.com/products/signal/
http://mathworks.com/products/signal/
http://www.ml.uni-saarland.de/code/GraphDemo/GraphDemo.htm
http://www.ml.uni-saarland.de/code/GraphDemo/GraphDemo.htm
http://openmusictheory.com/popRockForm.html
http://openmusictheory.com/popRockForm.html

158 Bibliography

[34] R Core Team: R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing (Session), 2015. –

URL http://www.R-project.org/. – Accessed: 2015-08-31

[35] ROLI Ltd.: JUCE cross-platform C++ library. http://www.juce.com/. –

Accessed: 2015-08-31

[36] Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. In: Journal of computational and applied mathe-

matics 20 (1987), p. 53–65

[37] Rowland, D.: dRowAudio - A JUCE module for high level audio application

development. http://drowaudio.co.uk/docs/. – Accessed: 2015-08-31

[38] Schmidt-Jones, C.: Time Signature. OpenStax CNX. http://cnx.org/

contents/68100121-0efa-4bd8-a0ca-3336e8d01a10@16. – Accessed: 2015-

08-31

[39] Sengpiel, E.: The human perception of loudness. http://www.

sengpielaudio.com/calculator-loudness.htm. – Accessed: 2015-08-31

[40] Shi, J.; Malik, J.: Normalized cuts and image segmentation. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 22 (2000), No. 8,

p. 888–905

[41] Siegel, S.; Castellan, N.J.: Nonparametric statistics for the behavioral

sciences. Second edition. McGraw–Hill, Inc., 1988

[42] Tauscher, J.; Wenger, S.; Magnor, M.: Audio Resynthesis on the Dance-

floor: A Music Structural Approach. In: Proceedings of Vision, Modeling and

Visualization (VMV), 2013, p. 8

[43] Verhelst, W.; Roelands, M.: An overlap-add technique based on waveform

similarity (WSOLA) for high quality time-scale modification of speech. In:

Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP) Vol. 2, 1993, p. 554–557

[44] Webster, P.; Jir̆́ıc̆ek, O.: A Brief Comparison of Loudness Evaluation Meth-

ods. In: Acoustic Sheets, Department of Physics, Czech Technical University

in Prague 20 (2014), No. 2

http://www.R-project.org/
http://www.juce.com/
http://drowaudio.co.uk/docs/
http://cnx.org/contents/68100121-0efa-4bd8-a0ca-3336e8d01a10@16
http://cnx.org/contents/68100121-0efa-4bd8-a0ca-3336e8d01a10@16
http://www.sengpielaudio.com/calculator-loudness.htm
http://www.sengpielaudio.com/calculator-loudness.htm

Bibliography 159

[45] Weisstein, E. W.: Cross-Correlation. http://mathworld.wolfram.com/

Cross-Correlation.html. – Accessed: 2015-08-31

[46] Wenger, S.; Magnor, M.: Constrained Example-Based Audio Synthesis. In:

Proceedings of the International Conference on Multimedia and Expo (ICME),

2011, p. 6

[47] Wenger, S.; Magnor, M.: A Genetic Algorithm for Audio Retargeting. In:

Proceedings of ACM Multimedia (ACMMM), 2012, p. 705–708

[48] Wenner, S.: Music Retargeting and Synthesis, Swiss Federal Institute of

Technology Zurich, Diploma thesis, 2012

[49] WFMU: Free Music Archive. http://freemusicarchive.org/. – Accessed:

2015-08-31

[50] Zapata, J.; Davies, M. E. P.; Gómez, E.: Multi-feature Beat Tracking. In:

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP) 22 (2014), No. 4, p. 816–825

[51] Zar, J. H.: Significance testing of the Spearman rank correlation coefficient. In:

Journal of the American Statistical Association 67 (1972), No. 339, p. 578–580

[52] Zheng, F.; Zhang, Gu.; Song, Z.: Comparison of different implementations

of MFCC. In: Journal of Computer Science and Technology 16 (2001), No. 6,

p. 582–589

[53] Zwicker, E.; Fastl, H.; Widmann, U.; Kurakata, K.; Kuwano, S.;

Namba, S.: Program for calculating loudness according to DIN 45631 (ISO

532B). In: Journal of the Acoustical Society of Japan (E) 12 (1991), No. 1,

p. 39–42

http://mathworld.wolfram.com/Cross-Correlation.html
http://mathworld.wolfram.com/Cross-Correlation.html
http://freemusicarchive.org/

Index

amplitude, 77

change function, 82

average response score, 126

beat, 10

strong, 10

weak, 10

bixel, 23

bixel jump, 30

backward, 30

distance, 30

forward, 30

shift, 30

significantly altered, 124

bixel path, 43

cost, 44

length, 44

validity, 44

bixel transition, 29

cost, 30

destination, 30

origin, 30

cluster, 10

cut, 22

empirical success probability, 105

heuristic function, 60

admissible, 60

monotonic, 61

multiple goal, 61

importance, 22

function, 50

jump, 21

backward, 22

destination, 21

distance, 22

forward, 21

origin, 21

wrong, 65

loudness, 11

change function, 83

continuity, 11

measure, 10

meter, 10

metric level, 10

pitch, 11

segment, 10

transition, 10

segmentation, 10

accuracy, 114

ground truth, 22

target, 22

self-similarity matrix, 31

sound pressure, 11

standard test set, 105

162 Index

synchronisation error, 78

target duration, 22

tempo, 10

timbre, 11

time signature, 10

transition cost matrix, 30

typical test set, 118

	Front page
	Contents
	Mathematical Notation
	Introduction
	Music and music rearrangement
	Scope and results of the thesis
	Structure of the thesis

	Background and related work
	Music theory
	Existing approaches
	Preliminary study
	Issues of the selected approach

	Overview
	Problem statement
	System overview

	System components
	Beat tracking system
	Preprocessing
	Transition costs regarding timbre
	Transition costs regarding loudness
	Automatic segmentation

	Path optimisation
	Problem formulation
	Estimating the path length a priori
	Unified cost matrix
	Repetition avoidance
	Multiple goal A* algorithm
	Segmentation enforcement with tolerances

	Jump optimisation
	Synchronisation
	Loudness equalisation
	Crossfading

	Time-scale modification
	User interface

	Evaluation
	Automatic evaluation
	Estimating the path length a priori
	Path optimisation algorithms
	Repetition avoidance
	Segmentation tolerance

	Listening study
	Transition quality
	Jump optimisation

	Conclusions
	Additional information
	Parameters
	Databases
	Experiment evaluations

	List of Figures
	List of Algorithms
	Bibliography
	Index

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:
	fd@rm@6:
	fd@rm@7:
	fd@rm@8:
	fd@rm@9:
	fd@rm@10:
	fd@rm@11:
	fd@rm@12:
	fd@rm@13:
	fd@rm@14:

